Balancing Defects and Microcrystals in Carbon Anodes by Molecular Chemistry Method for Sodium‐Ion Batteries

Carbon materials with large capacity and low potential serve as promising anode materials for sodium‐ion batteries (SIBs). Carbon defects offer active sites for sodium storage but sacrifice reversibility, whereas carbon microcrystals improve conductivity but may suffer from low capacity. Herein, the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Small (Weinheim an der Bergstrasse, Germany) Germany), 2024-11, Vol.21 (4), p.e2409313-n/a
Hauptverfasser: Zhang, Yong, Yang, Qi, Zhang, Yi, Lu, Puda, Liu, Ziqiang, Jiang, Na, Qu, Keqi, Ren, Zhengbing, Tao, Zui, Hou, Yifei, Tang, Yongchao, Wang, Jianli, Qiu, Jieshan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 4
container_start_page e2409313
container_title Small (Weinheim an der Bergstrasse, Germany)
container_volume 21
creator Zhang, Yong
Yang, Qi
Zhang, Yi
Lu, Puda
Liu, Ziqiang
Jiang, Na
Qu, Keqi
Ren, Zhengbing
Tao, Zui
Hou, Yifei
Tang, Yongchao
Wang, Jianli
Qiu, Jieshan
description Carbon materials with large capacity and low potential serve as promising anode materials for sodium‐ion batteries (SIBs). Carbon defects offer active sites for sodium storage but sacrifice reversibility, whereas carbon microcrystals improve conductivity but may suffer from low capacity. Herein, the balance between defects and microcrystals is realized by the molecular chemistry method of cross‐linking and defect repairing. Real‐time spectroscopic analyses reveal that the decomposition of tetrabromophthalic anhydride (TBPA) molecule induces the dehydrogenation of pitch to release small gas molecules to form pseudo‐closed pores, followed by the cross‐linking of C═O bonds in TBPA with the dehydrogenated pitch to form C─O─C bonds and thus suppress the excessive microcrystal growth. Meanwhile, the decomposition products of TBPA can also react with the dehydrogenated pitch to repair carbon defects. Thanks to the microstructure balance, the as‐synthesized carbon material exhibits a smoother ion mass transfer channel (d(002) = 0.386 nm, La = 4.56 nm) and a larger storage space (Vpseudo‐closed pore = 0.086 cm3 g−1) than the pitch carbon (PC, d(002) = 0.349 nm, La = 5.90 nm, Vpseudo‐closed pore = 0.041 cm3 g−1), increasing the capacity from 162.5 to 336.5 mAh g−1. This work sheds a chemical light on regulating carbon material microstructure for advanced SIBs. A defect and microcrystal balanced strategy is proposed to regulate carbon microstructure for improving the sodium‐ion battery performance. Tetrabromophthalic anhydride (TBPA) promotes the dehydrogenation of pitch, which exhibits an electron‐rich state and can react with the positively charged TBPA derivatives to repair carbon defects. Meanwhile, the crosslinking of C═O in TBPA with pitch to form C─O─C can suppress the excessive microcrystal growth.
doi_str_mv 10.1002/smll.202409313
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3134069454</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3134069454</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2703-c5df917e598b1da0b19fcd6d2ba44d0b97ab6126535b85695dd2ba50e0e172613</originalsourceid><addsrcrecordid>eNqFkLtOwzAUhi0EglJYGZFHlhTbiZ16bMtVasVQmCNfTiAoiYudCHXjEXhGngRXhTIy2bL_8-n8H0JnlIwoIewyNHU9YoRlRKY03UMDKmiaiDGT-7s7JUfoOIRXQlLKsvwQHaVSUEIFH6BmqmrVmqp9xldQgukCVq3Fi8p4Z_w6dKoOuGrxTHntWjxpnYWA9RovXA2mr5XHsxdoqtD5-Abdi7O4dB4vna365uvj8z5OTVXXga8gnKCDMgLh9Occoqeb68fZXTJ_uL2fTeaJYTlJE8NtKWkOXI41tYpoKktjhWVaZZklWuZKC8oET7kecyG53XxxAgRozmLpIbrYclfevfUQuiJuaKCOVcH1oYiqMiJkxrMYHW2jsXAIHspi5atG-XVBSbFRXGwUFzvFceD8h93rBuwu_us0BuQ28F7VsP4HVywX8_kf_BsKZooQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3134069454</pqid></control><display><type>article</type><title>Balancing Defects and Microcrystals in Carbon Anodes by Molecular Chemistry Method for Sodium‐Ion Batteries</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Zhang, Yong ; Yang, Qi ; Zhang, Yi ; Lu, Puda ; Liu, Ziqiang ; Jiang, Na ; Qu, Keqi ; Ren, Zhengbing ; Tao, Zui ; Hou, Yifei ; Tang, Yongchao ; Wang, Jianli ; Qiu, Jieshan</creator><creatorcontrib>Zhang, Yong ; Yang, Qi ; Zhang, Yi ; Lu, Puda ; Liu, Ziqiang ; Jiang, Na ; Qu, Keqi ; Ren, Zhengbing ; Tao, Zui ; Hou, Yifei ; Tang, Yongchao ; Wang, Jianli ; Qiu, Jieshan</creatorcontrib><description>Carbon materials with large capacity and low potential serve as promising anode materials for sodium‐ion batteries (SIBs). Carbon defects offer active sites for sodium storage but sacrifice reversibility, whereas carbon microcrystals improve conductivity but may suffer from low capacity. Herein, the balance between defects and microcrystals is realized by the molecular chemistry method of cross‐linking and defect repairing. Real‐time spectroscopic analyses reveal that the decomposition of tetrabromophthalic anhydride (TBPA) molecule induces the dehydrogenation of pitch to release small gas molecules to form pseudo‐closed pores, followed by the cross‐linking of C═O bonds in TBPA with the dehydrogenated pitch to form C─O─C bonds and thus suppress the excessive microcrystal growth. Meanwhile, the decomposition products of TBPA can also react with the dehydrogenated pitch to repair carbon defects. Thanks to the microstructure balance, the as‐synthesized carbon material exhibits a smoother ion mass transfer channel (d(002) = 0.386 nm, La = 4.56 nm) and a larger storage space (Vpseudo‐closed pore = 0.086 cm3 g−1) than the pitch carbon (PC, d(002) = 0.349 nm, La = 5.90 nm, Vpseudo‐closed pore = 0.041 cm3 g−1), increasing the capacity from 162.5 to 336.5 mAh g−1. This work sheds a chemical light on regulating carbon material microstructure for advanced SIBs. A defect and microcrystal balanced strategy is proposed to regulate carbon microstructure for improving the sodium‐ion battery performance. Tetrabromophthalic anhydride (TBPA) promotes the dehydrogenation of pitch, which exhibits an electron‐rich state and can react with the positively charged TBPA derivatives to repair carbon defects. Meanwhile, the crosslinking of C═O in TBPA with pitch to form C─O─C can suppress the excessive microcrystal growth.</description><identifier>ISSN: 1613-6810</identifier><identifier>ISSN: 1613-6829</identifier><identifier>EISSN: 1613-6829</identifier><identifier>DOI: 10.1002/smll.202409313</identifier><identifier>PMID: 39610165</identifier><language>eng</language><publisher>Germany</publisher><subject>balancing defects and microcrystals ; carbon materials ; molecular chemistry ; sodium‐ion batteries</subject><ispartof>Small (Weinheim an der Bergstrasse, Germany), 2024-11, Vol.21 (4), p.e2409313-n/a</ispartof><rights>2024 Wiley‐VCH GmbH</rights><rights>2024 Wiley‐VCH GmbH.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2703-c5df917e598b1da0b19fcd6d2ba44d0b97ab6126535b85695dd2ba50e0e172613</cites><orcidid>0000-0003-2017-9290</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fsmll.202409313$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fsmll.202409313$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39610165$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Yong</creatorcontrib><creatorcontrib>Yang, Qi</creatorcontrib><creatorcontrib>Zhang, Yi</creatorcontrib><creatorcontrib>Lu, Puda</creatorcontrib><creatorcontrib>Liu, Ziqiang</creatorcontrib><creatorcontrib>Jiang, Na</creatorcontrib><creatorcontrib>Qu, Keqi</creatorcontrib><creatorcontrib>Ren, Zhengbing</creatorcontrib><creatorcontrib>Tao, Zui</creatorcontrib><creatorcontrib>Hou, Yifei</creatorcontrib><creatorcontrib>Tang, Yongchao</creatorcontrib><creatorcontrib>Wang, Jianli</creatorcontrib><creatorcontrib>Qiu, Jieshan</creatorcontrib><title>Balancing Defects and Microcrystals in Carbon Anodes by Molecular Chemistry Method for Sodium‐Ion Batteries</title><title>Small (Weinheim an der Bergstrasse, Germany)</title><addtitle>Small</addtitle><description>Carbon materials with large capacity and low potential serve as promising anode materials for sodium‐ion batteries (SIBs). Carbon defects offer active sites for sodium storage but sacrifice reversibility, whereas carbon microcrystals improve conductivity but may suffer from low capacity. Herein, the balance between defects and microcrystals is realized by the molecular chemistry method of cross‐linking and defect repairing. Real‐time spectroscopic analyses reveal that the decomposition of tetrabromophthalic anhydride (TBPA) molecule induces the dehydrogenation of pitch to release small gas molecules to form pseudo‐closed pores, followed by the cross‐linking of C═O bonds in TBPA with the dehydrogenated pitch to form C─O─C bonds and thus suppress the excessive microcrystal growth. Meanwhile, the decomposition products of TBPA can also react with the dehydrogenated pitch to repair carbon defects. Thanks to the microstructure balance, the as‐synthesized carbon material exhibits a smoother ion mass transfer channel (d(002) = 0.386 nm, La = 4.56 nm) and a larger storage space (Vpseudo‐closed pore = 0.086 cm3 g−1) than the pitch carbon (PC, d(002) = 0.349 nm, La = 5.90 nm, Vpseudo‐closed pore = 0.041 cm3 g−1), increasing the capacity from 162.5 to 336.5 mAh g−1. This work sheds a chemical light on regulating carbon material microstructure for advanced SIBs. A defect and microcrystal balanced strategy is proposed to regulate carbon microstructure for improving the sodium‐ion battery performance. Tetrabromophthalic anhydride (TBPA) promotes the dehydrogenation of pitch, which exhibits an electron‐rich state and can react with the positively charged TBPA derivatives to repair carbon defects. Meanwhile, the crosslinking of C═O in TBPA with pitch to form C─O─C can suppress the excessive microcrystal growth.</description><subject>balancing defects and microcrystals</subject><subject>carbon materials</subject><subject>molecular chemistry</subject><subject>sodium‐ion batteries</subject><issn>1613-6810</issn><issn>1613-6829</issn><issn>1613-6829</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkLtOwzAUhi0EglJYGZFHlhTbiZ16bMtVasVQmCNfTiAoiYudCHXjEXhGngRXhTIy2bL_8-n8H0JnlIwoIewyNHU9YoRlRKY03UMDKmiaiDGT-7s7JUfoOIRXQlLKsvwQHaVSUEIFH6BmqmrVmqp9xldQgukCVq3Fi8p4Z_w6dKoOuGrxTHntWjxpnYWA9RovXA2mr5XHsxdoqtD5-Abdi7O4dB4vna365uvj8z5OTVXXga8gnKCDMgLh9Occoqeb68fZXTJ_uL2fTeaJYTlJE8NtKWkOXI41tYpoKktjhWVaZZklWuZKC8oET7kecyG53XxxAgRozmLpIbrYclfevfUQuiJuaKCOVcH1oYiqMiJkxrMYHW2jsXAIHspi5atG-XVBSbFRXGwUFzvFceD8h93rBuwu_us0BuQ28F7VsP4HVywX8_kf_BsKZooQ</recordid><startdate>20241128</startdate><enddate>20241128</enddate><creator>Zhang, Yong</creator><creator>Yang, Qi</creator><creator>Zhang, Yi</creator><creator>Lu, Puda</creator><creator>Liu, Ziqiang</creator><creator>Jiang, Na</creator><creator>Qu, Keqi</creator><creator>Ren, Zhengbing</creator><creator>Tao, Zui</creator><creator>Hou, Yifei</creator><creator>Tang, Yongchao</creator><creator>Wang, Jianli</creator><creator>Qiu, Jieshan</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-2017-9290</orcidid></search><sort><creationdate>20241128</creationdate><title>Balancing Defects and Microcrystals in Carbon Anodes by Molecular Chemistry Method for Sodium‐Ion Batteries</title><author>Zhang, Yong ; Yang, Qi ; Zhang, Yi ; Lu, Puda ; Liu, Ziqiang ; Jiang, Na ; Qu, Keqi ; Ren, Zhengbing ; Tao, Zui ; Hou, Yifei ; Tang, Yongchao ; Wang, Jianli ; Qiu, Jieshan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2703-c5df917e598b1da0b19fcd6d2ba44d0b97ab6126535b85695dd2ba50e0e172613</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>balancing defects and microcrystals</topic><topic>carbon materials</topic><topic>molecular chemistry</topic><topic>sodium‐ion batteries</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Yong</creatorcontrib><creatorcontrib>Yang, Qi</creatorcontrib><creatorcontrib>Zhang, Yi</creatorcontrib><creatorcontrib>Lu, Puda</creatorcontrib><creatorcontrib>Liu, Ziqiang</creatorcontrib><creatorcontrib>Jiang, Na</creatorcontrib><creatorcontrib>Qu, Keqi</creatorcontrib><creatorcontrib>Ren, Zhengbing</creatorcontrib><creatorcontrib>Tao, Zui</creatorcontrib><creatorcontrib>Hou, Yifei</creatorcontrib><creatorcontrib>Tang, Yongchao</creatorcontrib><creatorcontrib>Wang, Jianli</creatorcontrib><creatorcontrib>Qiu, Jieshan</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Yong</au><au>Yang, Qi</au><au>Zhang, Yi</au><au>Lu, Puda</au><au>Liu, Ziqiang</au><au>Jiang, Na</au><au>Qu, Keqi</au><au>Ren, Zhengbing</au><au>Tao, Zui</au><au>Hou, Yifei</au><au>Tang, Yongchao</au><au>Wang, Jianli</au><au>Qiu, Jieshan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Balancing Defects and Microcrystals in Carbon Anodes by Molecular Chemistry Method for Sodium‐Ion Batteries</atitle><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle><addtitle>Small</addtitle><date>2024-11-28</date><risdate>2024</risdate><volume>21</volume><issue>4</issue><spage>e2409313</spage><epage>n/a</epage><pages>e2409313-n/a</pages><issn>1613-6810</issn><issn>1613-6829</issn><eissn>1613-6829</eissn><abstract>Carbon materials with large capacity and low potential serve as promising anode materials for sodium‐ion batteries (SIBs). Carbon defects offer active sites for sodium storage but sacrifice reversibility, whereas carbon microcrystals improve conductivity but may suffer from low capacity. Herein, the balance between defects and microcrystals is realized by the molecular chemistry method of cross‐linking and defect repairing. Real‐time spectroscopic analyses reveal that the decomposition of tetrabromophthalic anhydride (TBPA) molecule induces the dehydrogenation of pitch to release small gas molecules to form pseudo‐closed pores, followed by the cross‐linking of C═O bonds in TBPA with the dehydrogenated pitch to form C─O─C bonds and thus suppress the excessive microcrystal growth. Meanwhile, the decomposition products of TBPA can also react with the dehydrogenated pitch to repair carbon defects. Thanks to the microstructure balance, the as‐synthesized carbon material exhibits a smoother ion mass transfer channel (d(002) = 0.386 nm, La = 4.56 nm) and a larger storage space (Vpseudo‐closed pore = 0.086 cm3 g−1) than the pitch carbon (PC, d(002) = 0.349 nm, La = 5.90 nm, Vpseudo‐closed pore = 0.041 cm3 g−1), increasing the capacity from 162.5 to 336.5 mAh g−1. This work sheds a chemical light on regulating carbon material microstructure for advanced SIBs. A defect and microcrystal balanced strategy is proposed to regulate carbon microstructure for improving the sodium‐ion battery performance. Tetrabromophthalic anhydride (TBPA) promotes the dehydrogenation of pitch, which exhibits an electron‐rich state and can react with the positively charged TBPA derivatives to repair carbon defects. Meanwhile, the crosslinking of C═O in TBPA with pitch to form C─O─C can suppress the excessive microcrystal growth.</abstract><cop>Germany</cop><pmid>39610165</pmid><doi>10.1002/smll.202409313</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-2017-9290</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1613-6810
ispartof Small (Weinheim an der Bergstrasse, Germany), 2024-11, Vol.21 (4), p.e2409313-n/a
issn 1613-6810
1613-6829
1613-6829
language eng
recordid cdi_proquest_miscellaneous_3134069454
source Wiley Online Library Journals Frontfile Complete
subjects balancing defects and microcrystals
carbon materials
molecular chemistry
sodium‐ion batteries
title Balancing Defects and Microcrystals in Carbon Anodes by Molecular Chemistry Method for Sodium‐Ion Batteries
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T18%3A52%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Balancing%20Defects%20and%20Microcrystals%20in%20Carbon%20Anodes%20by%20Molecular%20Chemistry%20Method%20for%20Sodium%E2%80%90Ion%20Batteries&rft.jtitle=Small%20(Weinheim%20an%20der%20Bergstrasse,%20Germany)&rft.au=Zhang,%20Yong&rft.date=2024-11-28&rft.volume=21&rft.issue=4&rft.spage=e2409313&rft.epage=n/a&rft.pages=e2409313-n/a&rft.issn=1613-6810&rft.eissn=1613-6829&rft_id=info:doi/10.1002/smll.202409313&rft_dat=%3Cproquest_cross%3E3134069454%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3134069454&rft_id=info:pmid/39610165&rfr_iscdi=true