Establishment of a Reverse Genetics System for Rotavirus Vaccine Strain LLR and Developing Vaccine Candidates Carrying VP7 Gene Cloned From Human Strains Circulating in China
ABSTRACT Human rotavirus A (RVA) causes acute gastroenteritis in infants and young children. The LLR RVA vaccine, which licensed in 2000 and widely used in China, significantly reduced rotavirus disease burden in China. With the changing of RV circulating strains and the emergence of new genotypes,...
Gespeichert in:
Veröffentlicht in: | Journal of medical virology 2024-12, Vol.96 (12), p.e70065-n/a |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 12 |
container_start_page | e70065 |
container_title | Journal of medical virology |
container_volume | 96 |
creator | Liu, Xiafei Li, Shan Yu, Junjie Chai, Pengdi Xie, Zhiping Pang, Lili Li, Jinsong Zhu, Wuyang Ren, Weihong Duan, Zhaojun |
description | ABSTRACT
Human rotavirus A (RVA) causes acute gastroenteritis in infants and young children. The LLR RVA vaccine, which licensed in 2000 and widely used in China, significantly reduced rotavirus disease burden in China. With the changing of RV circulating strains and the emergence of new genotypes, the LLR vaccine against RVGE needed to be upgraded. In this study, we aimed to establish an RG system for the RVA vaccine strain LLR (G10P[15]). Transfection with plasmids expressing 11 genomic RNA segments of LLR along with the pCMV/868CP helper plasmid, resulted in rescue of the infectious virus with an artificially introduced genetic marker on its genome, indicating that an RG system for the LLR strain was successfully established. Furthermore, the plasmid‐based reverse genetics system was used to generate lamb RVA reassortants with VP4 or VP7 genes derived from human RVA strains in China, which were not previously adapted to cell culture. We were able to rescue the six VP7 (G1, G2, G3, G4, G8, and G9) mono‐reassortants, but no VP4 (P[4] or P[8]) mono‐reassortant was rescued. The six VP7 reassortants covered all G‐genotypes currently circulating in China and stably replicated in MA104 cells, which should be exploited as the next‐generation rotavirus vaccines candidates in China. Furthermore, the LLR RG system in this study will be a useful vaccine vector for intestinal pathogens such as norovirus and Vibrio cholerae. |
doi_str_mv | 10.1002/jmv.70065 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3134069318</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3149202600</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2785-cc0fac254be97f0e8f8b809817c3036966cf16f78046d4c560684c68aa497b6e3</originalsourceid><addsrcrecordid>eNp10ctu1DAUBmALgehQWPACyBIbWKQ9zsWXJQq9gAaBptBt5Dgn1KPEntrJoHkpnhF3ZugCiZUt-_N_LP2EvGZwxgDy8_W4PRMAvHpCFgwUzxQI9pQsgJU845xVJ-RFjGsAkCrPn5OTQnEGuRAL8vsiTrodbLwb0U3U91TTFW4xRKRX6HCyJtKbXZxwpL0PdOUnvbVhjvRWG2Md0pspaOvocrmi2nX0Y3o8-I11Px9Fnc5tpyeMaRvCbn_3TezzaT14hx29DH6k1_Oo3TEwWRvMPOjpgacB9Z11-iV51ush4qvjekp-XF58r6-z5derT_WHZWZyIavMGOi1yauyRSV6QNnLVoKSTJgCCq44Nz3jvZBQ8q40FQcuS8Ol1qUSLcfilLw75G6Cv58xTs1oo8Fh0A79HJuCFSVwVTCZ6Nt_6NrPwaXfJVWqHHIOkNT7gzLBxxiwbzbBjjrsGgbNQ4lNKrHZl5jsm2Pi3I7YPcq_rSVwfgC_7IC7_yc1n7_cHiL_AI84ppk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3149202600</pqid></control><display><type>article</type><title>Establishment of a Reverse Genetics System for Rotavirus Vaccine Strain LLR and Developing Vaccine Candidates Carrying VP7 Gene Cloned From Human Strains Circulating in China</title><source>Wiley-Blackwell Journals</source><source>MEDLINE</source><creator>Liu, Xiafei ; Li, Shan ; Yu, Junjie ; Chai, Pengdi ; Xie, Zhiping ; Pang, Lili ; Li, Jinsong ; Zhu, Wuyang ; Ren, Weihong ; Duan, Zhaojun</creator><creatorcontrib>Liu, Xiafei ; Li, Shan ; Yu, Junjie ; Chai, Pengdi ; Xie, Zhiping ; Pang, Lili ; Li, Jinsong ; Zhu, Wuyang ; Ren, Weihong ; Duan, Zhaojun</creatorcontrib><description>ABSTRACT
Human rotavirus A (RVA) causes acute gastroenteritis in infants and young children. The LLR RVA vaccine, which licensed in 2000 and widely used in China, significantly reduced rotavirus disease burden in China. With the changing of RV circulating strains and the emergence of new genotypes, the LLR vaccine against RVGE needed to be upgraded. In this study, we aimed to establish an RG system for the RVA vaccine strain LLR (G10P[15]). Transfection with plasmids expressing 11 genomic RNA segments of LLR along with the pCMV/868CP helper plasmid, resulted in rescue of the infectious virus with an artificially introduced genetic marker on its genome, indicating that an RG system for the LLR strain was successfully established. Furthermore, the plasmid‐based reverse genetics system was used to generate lamb RVA reassortants with VP4 or VP7 genes derived from human RVA strains in China, which were not previously adapted to cell culture. We were able to rescue the six VP7 (G1, G2, G3, G4, G8, and G9) mono‐reassortants, but no VP4 (P[4] or P[8]) mono‐reassortant was rescued. The six VP7 reassortants covered all G‐genotypes currently circulating in China and stably replicated in MA104 cells, which should be exploited as the next‐generation rotavirus vaccines candidates in China. Furthermore, the LLR RG system in this study will be a useful vaccine vector for intestinal pathogens such as norovirus and Vibrio cholerae.</description><identifier>ISSN: 0146-6615</identifier><identifier>ISSN: 1096-9071</identifier><identifier>EISSN: 1096-9071</identifier><identifier>DOI: 10.1002/jmv.70065</identifier><identifier>PMID: 39610277</identifier><language>eng</language><publisher>United States: Wiley Subscription Services, Inc</publisher><subject>Animals ; Antigens, Viral - genetics ; Antigens, Viral - immunology ; Capsid Proteins - genetics ; Capsid Proteins - immunology ; Cell culture ; Cell Line ; China ; Circulation ; Gastroenteritis ; Genetic markers ; Genetics ; Genotype ; Genotypes ; Humans ; LLR ; Plasmids ; Plasmids - genetics ; plasmid‐based reverse genetics system ; Reassortant Viruses - genetics ; Reassortant Viruses - immunology ; reassortment ; Reverse Genetics - methods ; RNA viruses ; Rotavirus ; Rotavirus - classification ; Rotavirus - genetics ; Rotavirus - immunology ; Rotavirus Infections - prevention & control ; Rotavirus Infections - virology ; Rotavirus Vaccines - immunology ; Strains (organisms) ; Transfection ; vaccine ; Vaccine Development ; Vaccines ; Viruses ; VP7 ; VP7 gene</subject><ispartof>Journal of medical virology, 2024-12, Vol.96 (12), p.e70065-n/a</ispartof><rights>2024 Wiley Periodicals LLC.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2785-cc0fac254be97f0e8f8b809817c3036966cf16f78046d4c560684c68aa497b6e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjmv.70065$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjmv.70065$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,27923,27924,45573,45574</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39610277$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Liu, Xiafei</creatorcontrib><creatorcontrib>Li, Shan</creatorcontrib><creatorcontrib>Yu, Junjie</creatorcontrib><creatorcontrib>Chai, Pengdi</creatorcontrib><creatorcontrib>Xie, Zhiping</creatorcontrib><creatorcontrib>Pang, Lili</creatorcontrib><creatorcontrib>Li, Jinsong</creatorcontrib><creatorcontrib>Zhu, Wuyang</creatorcontrib><creatorcontrib>Ren, Weihong</creatorcontrib><creatorcontrib>Duan, Zhaojun</creatorcontrib><title>Establishment of a Reverse Genetics System for Rotavirus Vaccine Strain LLR and Developing Vaccine Candidates Carrying VP7 Gene Cloned From Human Strains Circulating in China</title><title>Journal of medical virology</title><addtitle>J Med Virol</addtitle><description>ABSTRACT
Human rotavirus A (RVA) causes acute gastroenteritis in infants and young children. The LLR RVA vaccine, which licensed in 2000 and widely used in China, significantly reduced rotavirus disease burden in China. With the changing of RV circulating strains and the emergence of new genotypes, the LLR vaccine against RVGE needed to be upgraded. In this study, we aimed to establish an RG system for the RVA vaccine strain LLR (G10P[15]). Transfection with plasmids expressing 11 genomic RNA segments of LLR along with the pCMV/868CP helper plasmid, resulted in rescue of the infectious virus with an artificially introduced genetic marker on its genome, indicating that an RG system for the LLR strain was successfully established. Furthermore, the plasmid‐based reverse genetics system was used to generate lamb RVA reassortants with VP4 or VP7 genes derived from human RVA strains in China, which were not previously adapted to cell culture. We were able to rescue the six VP7 (G1, G2, G3, G4, G8, and G9) mono‐reassortants, but no VP4 (P[4] or P[8]) mono‐reassortant was rescued. The six VP7 reassortants covered all G‐genotypes currently circulating in China and stably replicated in MA104 cells, which should be exploited as the next‐generation rotavirus vaccines candidates in China. Furthermore, the LLR RG system in this study will be a useful vaccine vector for intestinal pathogens such as norovirus and Vibrio cholerae.</description><subject>Animals</subject><subject>Antigens, Viral - genetics</subject><subject>Antigens, Viral - immunology</subject><subject>Capsid Proteins - genetics</subject><subject>Capsid Proteins - immunology</subject><subject>Cell culture</subject><subject>Cell Line</subject><subject>China</subject><subject>Circulation</subject><subject>Gastroenteritis</subject><subject>Genetic markers</subject><subject>Genetics</subject><subject>Genotype</subject><subject>Genotypes</subject><subject>Humans</subject><subject>LLR</subject><subject>Plasmids</subject><subject>Plasmids - genetics</subject><subject>plasmid‐based reverse genetics system</subject><subject>Reassortant Viruses - genetics</subject><subject>Reassortant Viruses - immunology</subject><subject>reassortment</subject><subject>Reverse Genetics - methods</subject><subject>RNA viruses</subject><subject>Rotavirus</subject><subject>Rotavirus - classification</subject><subject>Rotavirus - genetics</subject><subject>Rotavirus - immunology</subject><subject>Rotavirus Infections - prevention & control</subject><subject>Rotavirus Infections - virology</subject><subject>Rotavirus Vaccines - immunology</subject><subject>Strains (organisms)</subject><subject>Transfection</subject><subject>vaccine</subject><subject>Vaccine Development</subject><subject>Vaccines</subject><subject>Viruses</subject><subject>VP7</subject><subject>VP7 gene</subject><issn>0146-6615</issn><issn>1096-9071</issn><issn>1096-9071</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp10ctu1DAUBmALgehQWPACyBIbWKQ9zsWXJQq9gAaBptBt5Dgn1KPEntrJoHkpnhF3ZugCiZUt-_N_LP2EvGZwxgDy8_W4PRMAvHpCFgwUzxQI9pQsgJU845xVJ-RFjGsAkCrPn5OTQnEGuRAL8vsiTrodbLwb0U3U91TTFW4xRKRX6HCyJtKbXZxwpL0PdOUnvbVhjvRWG2Md0pspaOvocrmi2nX0Y3o8-I11Px9Fnc5tpyeMaRvCbn_3TezzaT14hx29DH6k1_Oo3TEwWRvMPOjpgacB9Z11-iV51ush4qvjekp-XF58r6-z5derT_WHZWZyIavMGOi1yauyRSV6QNnLVoKSTJgCCq44Nz3jvZBQ8q40FQcuS8Ol1qUSLcfilLw75G6Cv58xTs1oo8Fh0A79HJuCFSVwVTCZ6Nt_6NrPwaXfJVWqHHIOkNT7gzLBxxiwbzbBjjrsGgbNQ4lNKrHZl5jsm2Pi3I7YPcq_rSVwfgC_7IC7_yc1n7_cHiL_AI84ppk</recordid><startdate>202412</startdate><enddate>202412</enddate><creator>Liu, Xiafei</creator><creator>Li, Shan</creator><creator>Yu, Junjie</creator><creator>Chai, Pengdi</creator><creator>Xie, Zhiping</creator><creator>Pang, Lili</creator><creator>Li, Jinsong</creator><creator>Zhu, Wuyang</creator><creator>Ren, Weihong</creator><creator>Duan, Zhaojun</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7TK</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>202412</creationdate><title>Establishment of a Reverse Genetics System for Rotavirus Vaccine Strain LLR and Developing Vaccine Candidates Carrying VP7 Gene Cloned From Human Strains Circulating in China</title><author>Liu, Xiafei ; Li, Shan ; Yu, Junjie ; Chai, Pengdi ; Xie, Zhiping ; Pang, Lili ; Li, Jinsong ; Zhu, Wuyang ; Ren, Weihong ; Duan, Zhaojun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2785-cc0fac254be97f0e8f8b809817c3036966cf16f78046d4c560684c68aa497b6e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Animals</topic><topic>Antigens, Viral - genetics</topic><topic>Antigens, Viral - immunology</topic><topic>Capsid Proteins - genetics</topic><topic>Capsid Proteins - immunology</topic><topic>Cell culture</topic><topic>Cell Line</topic><topic>China</topic><topic>Circulation</topic><topic>Gastroenteritis</topic><topic>Genetic markers</topic><topic>Genetics</topic><topic>Genotype</topic><topic>Genotypes</topic><topic>Humans</topic><topic>LLR</topic><topic>Plasmids</topic><topic>Plasmids - genetics</topic><topic>plasmid‐based reverse genetics system</topic><topic>Reassortant Viruses - genetics</topic><topic>Reassortant Viruses - immunology</topic><topic>reassortment</topic><topic>Reverse Genetics - methods</topic><topic>RNA viruses</topic><topic>Rotavirus</topic><topic>Rotavirus - classification</topic><topic>Rotavirus - genetics</topic><topic>Rotavirus - immunology</topic><topic>Rotavirus Infections - prevention & control</topic><topic>Rotavirus Infections - virology</topic><topic>Rotavirus Vaccines - immunology</topic><topic>Strains (organisms)</topic><topic>Transfection</topic><topic>vaccine</topic><topic>Vaccine Development</topic><topic>Vaccines</topic><topic>Viruses</topic><topic>VP7</topic><topic>VP7 gene</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Xiafei</creatorcontrib><creatorcontrib>Li, Shan</creatorcontrib><creatorcontrib>Yu, Junjie</creatorcontrib><creatorcontrib>Chai, Pengdi</creatorcontrib><creatorcontrib>Xie, Zhiping</creatorcontrib><creatorcontrib>Pang, Lili</creatorcontrib><creatorcontrib>Li, Jinsong</creatorcontrib><creatorcontrib>Zhu, Wuyang</creatorcontrib><creatorcontrib>Ren, Weihong</creatorcontrib><creatorcontrib>Duan, Zhaojun</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Neurosciences Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of medical virology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Xiafei</au><au>Li, Shan</au><au>Yu, Junjie</au><au>Chai, Pengdi</au><au>Xie, Zhiping</au><au>Pang, Lili</au><au>Li, Jinsong</au><au>Zhu, Wuyang</au><au>Ren, Weihong</au><au>Duan, Zhaojun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Establishment of a Reverse Genetics System for Rotavirus Vaccine Strain LLR and Developing Vaccine Candidates Carrying VP7 Gene Cloned From Human Strains Circulating in China</atitle><jtitle>Journal of medical virology</jtitle><addtitle>J Med Virol</addtitle><date>2024-12</date><risdate>2024</risdate><volume>96</volume><issue>12</issue><spage>e70065</spage><epage>n/a</epage><pages>e70065-n/a</pages><issn>0146-6615</issn><issn>1096-9071</issn><eissn>1096-9071</eissn><abstract>ABSTRACT
Human rotavirus A (RVA) causes acute gastroenteritis in infants and young children. The LLR RVA vaccine, which licensed in 2000 and widely used in China, significantly reduced rotavirus disease burden in China. With the changing of RV circulating strains and the emergence of new genotypes, the LLR vaccine against RVGE needed to be upgraded. In this study, we aimed to establish an RG system for the RVA vaccine strain LLR (G10P[15]). Transfection with plasmids expressing 11 genomic RNA segments of LLR along with the pCMV/868CP helper plasmid, resulted in rescue of the infectious virus with an artificially introduced genetic marker on its genome, indicating that an RG system for the LLR strain was successfully established. Furthermore, the plasmid‐based reverse genetics system was used to generate lamb RVA reassortants with VP4 or VP7 genes derived from human RVA strains in China, which were not previously adapted to cell culture. We were able to rescue the six VP7 (G1, G2, G3, G4, G8, and G9) mono‐reassortants, but no VP4 (P[4] or P[8]) mono‐reassortant was rescued. The six VP7 reassortants covered all G‐genotypes currently circulating in China and stably replicated in MA104 cells, which should be exploited as the next‐generation rotavirus vaccines candidates in China. Furthermore, the LLR RG system in this study will be a useful vaccine vector for intestinal pathogens such as norovirus and Vibrio cholerae.</abstract><cop>United States</cop><pub>Wiley Subscription Services, Inc</pub><pmid>39610277</pmid><doi>10.1002/jmv.70065</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0146-6615 |
ispartof | Journal of medical virology, 2024-12, Vol.96 (12), p.e70065-n/a |
issn | 0146-6615 1096-9071 1096-9071 |
language | eng |
recordid | cdi_proquest_miscellaneous_3134069318 |
source | Wiley-Blackwell Journals; MEDLINE |
subjects | Animals Antigens, Viral - genetics Antigens, Viral - immunology Capsid Proteins - genetics Capsid Proteins - immunology Cell culture Cell Line China Circulation Gastroenteritis Genetic markers Genetics Genotype Genotypes Humans LLR Plasmids Plasmids - genetics plasmid‐based reverse genetics system Reassortant Viruses - genetics Reassortant Viruses - immunology reassortment Reverse Genetics - methods RNA viruses Rotavirus Rotavirus - classification Rotavirus - genetics Rotavirus - immunology Rotavirus Infections - prevention & control Rotavirus Infections - virology Rotavirus Vaccines - immunology Strains (organisms) Transfection vaccine Vaccine Development Vaccines Viruses VP7 VP7 gene |
title | Establishment of a Reverse Genetics System for Rotavirus Vaccine Strain LLR and Developing Vaccine Candidates Carrying VP7 Gene Cloned From Human Strains Circulating in China |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T14%3A28%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Establishment%20of%20a%20Reverse%20Genetics%20System%20for%20Rotavirus%20Vaccine%20Strain%20LLR%20and%20Developing%20Vaccine%20Candidates%20Carrying%20VP7%20Gene%20Cloned%20From%20Human%20Strains%20Circulating%20in%20China&rft.jtitle=Journal%20of%20medical%20virology&rft.au=Liu,%20Xiafei&rft.date=2024-12&rft.volume=96&rft.issue=12&rft.spage=e70065&rft.epage=n/a&rft.pages=e70065-n/a&rft.issn=0146-6615&rft.eissn=1096-9071&rft_id=info:doi/10.1002/jmv.70065&rft_dat=%3Cproquest_cross%3E3149202600%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3149202600&rft_id=info:pmid/39610277&rfr_iscdi=true |