Instant synthesis of nitrogen-doped Ti3C2 MXene quantum dots for fluorescence and electrochemical dual-mode detection of norepinephrine with a portable smartphone assay
Next-generation 2D materials, such as transition metal carbides and nitrides (MXenes), have received increasing attention owing to their physicochemical properties. In this study, we synthesized highly intense fluorescent materials, nitrogen-doped MXene quantum dots (N-MQDs) using an easy and less t...
Gespeichert in:
Veröffentlicht in: | Journal of materials chemistry. B, Materials for biology and medicine Materials for biology and medicine, 2025-01, Vol.13 (2), p.642-655 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 655 |
---|---|
container_issue | 2 |
container_start_page | 642 |
container_title | Journal of materials chemistry. B, Materials for biology and medicine |
container_volume | 13 |
creator | Chandran, Murugesan Chellasamy, Gayathri Mekala Veerapandian Dhanasekaran, Barkavi Govindaraju, Saravanan Kyusik Yun |
description | Next-generation 2D materials, such as transition metal carbides and nitrides (MXenes), have received increasing attention owing to their physicochemical properties. In this study, we synthesized highly intense fluorescent materials, nitrogen-doped MXene quantum dots (N-MQDs) using an easy and less time-consuming microwave-assisted method. These N-MQDs are spherical, fluorescent, and highly sensitive materials, as confirmed by high-resolution transmission electron microscopy, atomic force microscopy, UV-visible, fluorescence, Fourier transform infrared spectroscopy, X-ray diffraction, Raman spectroscopy, zeta potential, and contact angle measurements. The N-MQDs were used as dual probes for the fluorescence and electrochemical sensing of neurotransmitter norepinephrine (NE-0.1 to 500 μM). The sensing strategy is based on the Förster resonance energy transfer acquired by the N-MQDs, leading to fluorescence quenching at 400 nm. A new emission peak at 500 nm with color changes and NE-to-NE quinone conversion in an electrochemical reaction. Fluorescence and electrochemical analyses were revealed using the human serum sample limit of detection (LOD) values of 40 and 33 nM, respectively. For point-of-care analysis, we developed a smartphone-integrated sensor array to calculate intensity changes, and the relative red/green/blue (RGB) values were measured at different concentrations of NE. The synthesized fluorescent probe is a promising candidate for detecting NE in biofluids. It is highly selective toward NE and is suitable for the early diagnosis of neurological diseases. |
doi_str_mv | 10.1039/d4tb01818d |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_3134069228</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3134069228</sourcerecordid><originalsourceid>FETCH-LOGICAL-p146t-4abc4dcaf149e094340e8b3ac97a7dc45b2075d4681daab6dc9272b18b5252b33</originalsourceid><addsrcrecordid>eNpdj01LxzAMxocoKOrFTxDw4mXat23dUf74BooXBW-StpmbbO1cO8Rv5Me0qHgwhySQ3_MkKYojzk45k-2ZU8kwrrl2W8WeYBUrm4rr7b-ePe0WhzG-shya11qqveLzxseEPkH88KmnOEQIHfghLeGFfOnCTA4eBrkRcPdEnuBtzfQ6gQspQhcW6MY1LBQteUuA3gGNZLPc9jQNFkdwK47lFByBo5RHQ_DfO7JqHjzN_ZIzvA-pB4Q5LAnNSBAnXNLchzzCGPHjoNjpcIx0-Fv3i8fLi4fNdXl7f3WzOb8tZ67qVCo0VjmLHVctsVZJxUgbibZtsHFWVUawpnKq1twhmtrZVjTCcG0qUQkj5X5x8uM7L-FtpZiepyE_N47oKazxWfJsWbdC6Iwe_0Nfw7r4fF2mKqZlJZiUX4KkgOA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3150835203</pqid></control><display><type>article</type><title>Instant synthesis of nitrogen-doped Ti3C2 MXene quantum dots for fluorescence and electrochemical dual-mode detection of norepinephrine with a portable smartphone assay</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Chandran, Murugesan ; Chellasamy, Gayathri ; Mekala Veerapandian ; Dhanasekaran, Barkavi ; Govindaraju, Saravanan ; Kyusik Yun</creator><creatorcontrib>Chandran, Murugesan ; Chellasamy, Gayathri ; Mekala Veerapandian ; Dhanasekaran, Barkavi ; Govindaraju, Saravanan ; Kyusik Yun</creatorcontrib><description>Next-generation 2D materials, such as transition metal carbides and nitrides (MXenes), have received increasing attention owing to their physicochemical properties. In this study, we synthesized highly intense fluorescent materials, nitrogen-doped MXene quantum dots (N-MQDs) using an easy and less time-consuming microwave-assisted method. These N-MQDs are spherical, fluorescent, and highly sensitive materials, as confirmed by high-resolution transmission electron microscopy, atomic force microscopy, UV-visible, fluorescence, Fourier transform infrared spectroscopy, X-ray diffraction, Raman spectroscopy, zeta potential, and contact angle measurements. The N-MQDs were used as dual probes for the fluorescence and electrochemical sensing of neurotransmitter norepinephrine (NE-0.1 to 500 μM). The sensing strategy is based on the Förster resonance energy transfer acquired by the N-MQDs, leading to fluorescence quenching at 400 nm. A new emission peak at 500 nm with color changes and NE-to-NE quinone conversion in an electrochemical reaction. Fluorescence and electrochemical analyses were revealed using the human serum sample limit of detection (LOD) values of 40 and 33 nM, respectively. For point-of-care analysis, we developed a smartphone-integrated sensor array to calculate intensity changes, and the relative red/green/blue (RGB) values were measured at different concentrations of NE. The synthesized fluorescent probe is a promising candidate for detecting NE in biofluids. It is highly selective toward NE and is suitable for the early diagnosis of neurological diseases.</description><identifier>ISSN: 2050-750X</identifier><identifier>ISSN: 2050-7518</identifier><identifier>EISSN: 2050-7518</identifier><identifier>DOI: 10.1039/d4tb01818d</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Atomic force microscopy ; Contact angle ; Electrochemistry ; Energy transfer ; Fluorescence ; Fluorescence resonance energy transfer ; Fluorescent indicators ; Fourier transforms ; High resolution electron microscopy ; Infrared spectroscopy ; Metal carbides ; Microscopy ; MXenes ; Neurological diseases ; Nitrogen ; Norepinephrine ; Physicochemical properties ; Quantum dots ; Quinones ; Raman spectroscopy ; Sensor arrays ; Smartphones ; Spectrum analysis ; Synthesis ; Transition metals ; Transmission electron microscopy ; Two dimensional materials ; X-ray diffraction ; Zeta potential</subject><ispartof>Journal of materials chemistry. B, Materials for biology and medicine, 2025-01, Vol.13 (2), p.642-655</ispartof><rights>Copyright Royal Society of Chemistry 2025</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Chandran, Murugesan</creatorcontrib><creatorcontrib>Chellasamy, Gayathri</creatorcontrib><creatorcontrib>Mekala Veerapandian</creatorcontrib><creatorcontrib>Dhanasekaran, Barkavi</creatorcontrib><creatorcontrib>Govindaraju, Saravanan</creatorcontrib><creatorcontrib>Kyusik Yun</creatorcontrib><title>Instant synthesis of nitrogen-doped Ti3C2 MXene quantum dots for fluorescence and electrochemical dual-mode detection of norepinephrine with a portable smartphone assay</title><title>Journal of materials chemistry. B, Materials for biology and medicine</title><description>Next-generation 2D materials, such as transition metal carbides and nitrides (MXenes), have received increasing attention owing to their physicochemical properties. In this study, we synthesized highly intense fluorescent materials, nitrogen-doped MXene quantum dots (N-MQDs) using an easy and less time-consuming microwave-assisted method. These N-MQDs are spherical, fluorescent, and highly sensitive materials, as confirmed by high-resolution transmission electron microscopy, atomic force microscopy, UV-visible, fluorescence, Fourier transform infrared spectroscopy, X-ray diffraction, Raman spectroscopy, zeta potential, and contact angle measurements. The N-MQDs were used as dual probes for the fluorescence and electrochemical sensing of neurotransmitter norepinephrine (NE-0.1 to 500 μM). The sensing strategy is based on the Förster resonance energy transfer acquired by the N-MQDs, leading to fluorescence quenching at 400 nm. A new emission peak at 500 nm with color changes and NE-to-NE quinone conversion in an electrochemical reaction. Fluorescence and electrochemical analyses were revealed using the human serum sample limit of detection (LOD) values of 40 and 33 nM, respectively. For point-of-care analysis, we developed a smartphone-integrated sensor array to calculate intensity changes, and the relative red/green/blue (RGB) values were measured at different concentrations of NE. The synthesized fluorescent probe is a promising candidate for detecting NE in biofluids. It is highly selective toward NE and is suitable for the early diagnosis of neurological diseases.</description><subject>Atomic force microscopy</subject><subject>Contact angle</subject><subject>Electrochemistry</subject><subject>Energy transfer</subject><subject>Fluorescence</subject><subject>Fluorescence resonance energy transfer</subject><subject>Fluorescent indicators</subject><subject>Fourier transforms</subject><subject>High resolution electron microscopy</subject><subject>Infrared spectroscopy</subject><subject>Metal carbides</subject><subject>Microscopy</subject><subject>MXenes</subject><subject>Neurological diseases</subject><subject>Nitrogen</subject><subject>Norepinephrine</subject><subject>Physicochemical properties</subject><subject>Quantum dots</subject><subject>Quinones</subject><subject>Raman spectroscopy</subject><subject>Sensor arrays</subject><subject>Smartphones</subject><subject>Spectrum analysis</subject><subject>Synthesis</subject><subject>Transition metals</subject><subject>Transmission electron microscopy</subject><subject>Two dimensional materials</subject><subject>X-ray diffraction</subject><subject>Zeta potential</subject><issn>2050-750X</issn><issn>2050-7518</issn><issn>2050-7518</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><recordid>eNpdj01LxzAMxocoKOrFTxDw4mXat23dUf74BooXBW-StpmbbO1cO8Rv5Me0qHgwhySQ3_MkKYojzk45k-2ZU8kwrrl2W8WeYBUrm4rr7b-ePe0WhzG-shya11qqveLzxseEPkH88KmnOEQIHfghLeGFfOnCTA4eBrkRcPdEnuBtzfQ6gQspQhcW6MY1LBQteUuA3gGNZLPc9jQNFkdwK47lFByBo5RHQ_DfO7JqHjzN_ZIzvA-pB4Q5LAnNSBAnXNLchzzCGPHjoNjpcIx0-Fv3i8fLi4fNdXl7f3WzOb8tZ67qVCo0VjmLHVctsVZJxUgbibZtsHFWVUawpnKq1twhmtrZVjTCcG0qUQkj5X5x8uM7L-FtpZiepyE_N47oKazxWfJsWbdC6Iwe_0Nfw7r4fF2mKqZlJZiUX4KkgOA</recordid><startdate>20250102</startdate><enddate>20250102</enddate><creator>Chandran, Murugesan</creator><creator>Chellasamy, Gayathri</creator><creator>Mekala Veerapandian</creator><creator>Dhanasekaran, Barkavi</creator><creator>Govindaraju, Saravanan</creator><creator>Kyusik Yun</creator><general>Royal Society of Chemistry</general><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>20250102</creationdate><title>Instant synthesis of nitrogen-doped Ti3C2 MXene quantum dots for fluorescence and electrochemical dual-mode detection of norepinephrine with a portable smartphone assay</title><author>Chandran, Murugesan ; Chellasamy, Gayathri ; Mekala Veerapandian ; Dhanasekaran, Barkavi ; Govindaraju, Saravanan ; Kyusik Yun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p146t-4abc4dcaf149e094340e8b3ac97a7dc45b2075d4681daab6dc9272b18b5252b33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>Atomic force microscopy</topic><topic>Contact angle</topic><topic>Electrochemistry</topic><topic>Energy transfer</topic><topic>Fluorescence</topic><topic>Fluorescence resonance energy transfer</topic><topic>Fluorescent indicators</topic><topic>Fourier transforms</topic><topic>High resolution electron microscopy</topic><topic>Infrared spectroscopy</topic><topic>Metal carbides</topic><topic>Microscopy</topic><topic>MXenes</topic><topic>Neurological diseases</topic><topic>Nitrogen</topic><topic>Norepinephrine</topic><topic>Physicochemical properties</topic><topic>Quantum dots</topic><topic>Quinones</topic><topic>Raman spectroscopy</topic><topic>Sensor arrays</topic><topic>Smartphones</topic><topic>Spectrum analysis</topic><topic>Synthesis</topic><topic>Transition metals</topic><topic>Transmission electron microscopy</topic><topic>Two dimensional materials</topic><topic>X-ray diffraction</topic><topic>Zeta potential</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chandran, Murugesan</creatorcontrib><creatorcontrib>Chellasamy, Gayathri</creatorcontrib><creatorcontrib>Mekala Veerapandian</creatorcontrib><creatorcontrib>Dhanasekaran, Barkavi</creatorcontrib><creatorcontrib>Govindaraju, Saravanan</creatorcontrib><creatorcontrib>Kyusik Yun</creatorcontrib><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of materials chemistry. B, Materials for biology and medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chandran, Murugesan</au><au>Chellasamy, Gayathri</au><au>Mekala Veerapandian</au><au>Dhanasekaran, Barkavi</au><au>Govindaraju, Saravanan</au><au>Kyusik Yun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Instant synthesis of nitrogen-doped Ti3C2 MXene quantum dots for fluorescence and electrochemical dual-mode detection of norepinephrine with a portable smartphone assay</atitle><jtitle>Journal of materials chemistry. B, Materials for biology and medicine</jtitle><date>2025-01-02</date><risdate>2025</risdate><volume>13</volume><issue>2</issue><spage>642</spage><epage>655</epage><pages>642-655</pages><issn>2050-750X</issn><issn>2050-7518</issn><eissn>2050-7518</eissn><abstract>Next-generation 2D materials, such as transition metal carbides and nitrides (MXenes), have received increasing attention owing to their physicochemical properties. In this study, we synthesized highly intense fluorescent materials, nitrogen-doped MXene quantum dots (N-MQDs) using an easy and less time-consuming microwave-assisted method. These N-MQDs are spherical, fluorescent, and highly sensitive materials, as confirmed by high-resolution transmission electron microscopy, atomic force microscopy, UV-visible, fluorescence, Fourier transform infrared spectroscopy, X-ray diffraction, Raman spectroscopy, zeta potential, and contact angle measurements. The N-MQDs were used as dual probes for the fluorescence and electrochemical sensing of neurotransmitter norepinephrine (NE-0.1 to 500 μM). The sensing strategy is based on the Förster resonance energy transfer acquired by the N-MQDs, leading to fluorescence quenching at 400 nm. A new emission peak at 500 nm with color changes and NE-to-NE quinone conversion in an electrochemical reaction. Fluorescence and electrochemical analyses were revealed using the human serum sample limit of detection (LOD) values of 40 and 33 nM, respectively. For point-of-care analysis, we developed a smartphone-integrated sensor array to calculate intensity changes, and the relative red/green/blue (RGB) values were measured at different concentrations of NE. The synthesized fluorescent probe is a promising candidate for detecting NE in biofluids. It is highly selective toward NE and is suitable for the early diagnosis of neurological diseases.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d4tb01818d</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2050-750X |
ispartof | Journal of materials chemistry. B, Materials for biology and medicine, 2025-01, Vol.13 (2), p.642-655 |
issn | 2050-750X 2050-7518 2050-7518 |
language | eng |
recordid | cdi_proquest_miscellaneous_3134069228 |
source | Royal Society Of Chemistry Journals 2008- |
subjects | Atomic force microscopy Contact angle Electrochemistry Energy transfer Fluorescence Fluorescence resonance energy transfer Fluorescent indicators Fourier transforms High resolution electron microscopy Infrared spectroscopy Metal carbides Microscopy MXenes Neurological diseases Nitrogen Norepinephrine Physicochemical properties Quantum dots Quinones Raman spectroscopy Sensor arrays Smartphones Spectrum analysis Synthesis Transition metals Transmission electron microscopy Two dimensional materials X-ray diffraction Zeta potential |
title | Instant synthesis of nitrogen-doped Ti3C2 MXene quantum dots for fluorescence and electrochemical dual-mode detection of norepinephrine with a portable smartphone assay |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T00%3A36%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Instant%20synthesis%20of%20nitrogen-doped%20Ti3C2%20MXene%20quantum%20dots%20for%20fluorescence%20and%20electrochemical%20dual-mode%20detection%20of%20norepinephrine%20with%20a%20portable%20smartphone%20assay&rft.jtitle=Journal%20of%20materials%20chemistry.%20B,%20Materials%20for%20biology%20and%20medicine&rft.au=Chandran,%20Murugesan&rft.date=2025-01-02&rft.volume=13&rft.issue=2&rft.spage=642&rft.epage=655&rft.pages=642-655&rft.issn=2050-750X&rft.eissn=2050-7518&rft_id=info:doi/10.1039/d4tb01818d&rft_dat=%3Cproquest%3E3134069228%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3150835203&rft_id=info:pmid/&rfr_iscdi=true |