Long-read DNA sequencing reveals the organization of the mitochondrial genome in the early-branching dinoflagellate Oxyrrhis marina

The mitochondrial genomes of dinoflagellate protists are remarkable for their highly fragmented and heterogeneous organization. Early attempts to determine their structure without ‘next-generation’ DNA sequencing failed to recover a defined genome. Still, it coincided in showing that the proteins co...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Protist 2024-12, Vol.175 (6), p.126071, Article 126071
Hauptverfasser: Haro, Ronie, Walunjkar, Nikita, Jorapur, Soham, Slamovits, Claudio H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 6
container_start_page 126071
container_title Protist
container_volume 175
creator Haro, Ronie
Walunjkar, Nikita
Jorapur, Soham
Slamovits, Claudio H.
description The mitochondrial genomes of dinoflagellate protists are remarkable for their highly fragmented and heterogeneous organization. Early attempts to determine their structure without ‘next-generation’ DNA sequencing failed to recover a defined genome. Still, it coincided in showing that the proteins coding genes, three in total, and parts of the ribosomal RNA genes were spread across a diffuse assortment of small linear fragments. In contrast, a recent study employed Illumina sequencing to assemble a 326 kbp long single-molecule, circular mitochondrial genome in the symbiotic dinoflagellate Breviolum minutum. Here, we used a combination of short- and long-read massively-parallel DNA sequencing to analyze further the mitochondrial DNA of the early-branching dinoflagellate Oxyrrhis marina. We found that the mitochondrial genome of O. marina consists of 3 linear chromosomes sized 15.9, 33.8 and 40.6 kbp for a total of 90.3 kbp. It contains the cox1, cox3 and cob genes, the same three proteins encoded in the mitochondrion of all myzozoans (Apicomplexa and Dinophyceae), some fragments of ribosomal RNA genes as well as many non-functional gene fragments and extensive noncoding DNA. Our analysis unveiled segments syntenic patterns and rearrangements encompassing coding and non-coding regions, suggesting that recombination is a pervasive process driving the evolution of these genomes. •The organization of mitogenomes in dinoflagellates has been elusive due to extensive fragmentation, redundancy and recombination.•Long-read DNA sequencing enabled the assembly of a 90 kbp mitogenome in Oxyrrhis marina, an early-diverging dinoflagellate.•The genome consists of three linear molecules encoding three proteins, rRNA fragments, no tRNA genes, non-functional gene fragments, and noncoding DNA.•Excess of noncoding DNA appears to originate from the mutational degradation of gene duplicates.
doi_str_mv 10.1016/j.protis.2024.126071
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3133735237</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1434461024000634</els_id><sourcerecordid>3133735237</sourcerecordid><originalsourceid>FETCH-LOGICAL-c320t-8f633685b1fa0436a97ed462afc4b196b7127b1ee1c24aac4fdc6a4337d52bd43</originalsourceid><addsrcrecordid>eNqNkU-PFCEQxYnRuOvoNzCGo5ceKaDp7ovJZv2bTNyLngkN1T1MumGFno3j1S8us716NF6AwKv3qPoR8hLYFhioN4ftbYqLz1vOuNwCV6yBR-QSFLQV6yQ8LmcpZCUVsAvyLOcDYyA71T4lF6JTTADwS_JrF8NYJTSOvvtyRTN-P2KwPow04R2aKdNljzSm0QT_0yw-BhqH-7vZL9HuY3DJm4mOGOKM1If7NzRpOlV9MsHuz17OhzhMZsRpMgvSmx-nlPY-09kkH8xz8mQoSfjiYd-Qbx_ef73-VO1uPn6-vtpVVnC2VO2ghFBt3cNgmBTKdA06qbgZrOyhU30DvOkBESyXxlg5OKuMFKJxNe-dFBvyevUtgytt5kXPPtvznwLGY9YCasnrlin1H9JiK2pelg2Rq9SmmHPCQd8mXxo7aWD6TEof9EpKn0nplVQpe_WQcOxndH-L_qApgrerAMtI7jwmna0vbND5hHbRLvp_J_wGrO-ooA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3133735237</pqid></control><display><type>article</type><title>Long-read DNA sequencing reveals the organization of the mitochondrial genome in the early-branching dinoflagellate Oxyrrhis marina</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Haro, Ronie ; Walunjkar, Nikita ; Jorapur, Soham ; Slamovits, Claudio H.</creator><creatorcontrib>Haro, Ronie ; Walunjkar, Nikita ; Jorapur, Soham ; Slamovits, Claudio H.</creatorcontrib><description>The mitochondrial genomes of dinoflagellate protists are remarkable for their highly fragmented and heterogeneous organization. Early attempts to determine their structure without ‘next-generation’ DNA sequencing failed to recover a defined genome. Still, it coincided in showing that the proteins coding genes, three in total, and parts of the ribosomal RNA genes were spread across a diffuse assortment of small linear fragments. In contrast, a recent study employed Illumina sequencing to assemble a 326 kbp long single-molecule, circular mitochondrial genome in the symbiotic dinoflagellate Breviolum minutum. Here, we used a combination of short- and long-read massively-parallel DNA sequencing to analyze further the mitochondrial DNA of the early-branching dinoflagellate Oxyrrhis marina. We found that the mitochondrial genome of O. marina consists of 3 linear chromosomes sized 15.9, 33.8 and 40.6 kbp for a total of 90.3 kbp. It contains the cox1, cox3 and cob genes, the same three proteins encoded in the mitochondrion of all myzozoans (Apicomplexa and Dinophyceae), some fragments of ribosomal RNA genes as well as many non-functional gene fragments and extensive noncoding DNA. Our analysis unveiled segments syntenic patterns and rearrangements encompassing coding and non-coding regions, suggesting that recombination is a pervasive process driving the evolution of these genomes. •The organization of mitogenomes in dinoflagellates has been elusive due to extensive fragmentation, redundancy and recombination.•Long-read DNA sequencing enabled the assembly of a 90 kbp mitogenome in Oxyrrhis marina, an early-diverging dinoflagellate.•The genome consists of three linear molecules encoding three proteins, rRNA fragments, no tRNA genes, non-functional gene fragments, and noncoding DNA.•Excess of noncoding DNA appears to originate from the mutational degradation of gene duplicates.</description><identifier>ISSN: 1434-4610</identifier><identifier>ISSN: 1618-0941</identifier><identifier>EISSN: 1618-0941</identifier><identifier>DOI: 10.1016/j.protis.2024.126071</identifier><identifier>PMID: 39603112</identifier><language>eng</language><publisher>Germany: Elsevier GmbH</publisher><subject>Alveolate ; Dinoflagellida - classification ; Dinoflagellida - genetics ; Dinophyceae ; DNA, Mitochondrial - genetics ; DNA, Protozoan - genetics ; evolution ; genes ; Genome, Mitochondrial - genetics ; Genome, Protozoan - genetics ; High-Throughput Nucleotide Sequencing ; intergenic DNA ; Mitochondria ; mitochondrial DNA ; mitochondrial genome ; Non-coding DNA ; Oxyrrhis marina ; protists ; Recombination ; Ribosomal RNA ; Sequence Analysis, DNA</subject><ispartof>Protist, 2024-12, Vol.175 (6), p.126071, Article 126071</ispartof><rights>2024 The Authors</rights><rights>Copyright © 2024 The Authors. Published by Elsevier GmbH.. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c320t-8f633685b1fa0436a97ed462afc4b196b7127b1ee1c24aac4fdc6a4337d52bd43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1434461024000634$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39603112$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Haro, Ronie</creatorcontrib><creatorcontrib>Walunjkar, Nikita</creatorcontrib><creatorcontrib>Jorapur, Soham</creatorcontrib><creatorcontrib>Slamovits, Claudio H.</creatorcontrib><title>Long-read DNA sequencing reveals the organization of the mitochondrial genome in the early-branching dinoflagellate Oxyrrhis marina</title><title>Protist</title><addtitle>Protist</addtitle><description>The mitochondrial genomes of dinoflagellate protists are remarkable for their highly fragmented and heterogeneous organization. Early attempts to determine their structure without ‘next-generation’ DNA sequencing failed to recover a defined genome. Still, it coincided in showing that the proteins coding genes, three in total, and parts of the ribosomal RNA genes were spread across a diffuse assortment of small linear fragments. In contrast, a recent study employed Illumina sequencing to assemble a 326 kbp long single-molecule, circular mitochondrial genome in the symbiotic dinoflagellate Breviolum minutum. Here, we used a combination of short- and long-read massively-parallel DNA sequencing to analyze further the mitochondrial DNA of the early-branching dinoflagellate Oxyrrhis marina. We found that the mitochondrial genome of O. marina consists of 3 linear chromosomes sized 15.9, 33.8 and 40.6 kbp for a total of 90.3 kbp. It contains the cox1, cox3 and cob genes, the same three proteins encoded in the mitochondrion of all myzozoans (Apicomplexa and Dinophyceae), some fragments of ribosomal RNA genes as well as many non-functional gene fragments and extensive noncoding DNA. Our analysis unveiled segments syntenic patterns and rearrangements encompassing coding and non-coding regions, suggesting that recombination is a pervasive process driving the evolution of these genomes. •The organization of mitogenomes in dinoflagellates has been elusive due to extensive fragmentation, redundancy and recombination.•Long-read DNA sequencing enabled the assembly of a 90 kbp mitogenome in Oxyrrhis marina, an early-diverging dinoflagellate.•The genome consists of three linear molecules encoding three proteins, rRNA fragments, no tRNA genes, non-functional gene fragments, and noncoding DNA.•Excess of noncoding DNA appears to originate from the mutational degradation of gene duplicates.</description><subject>Alveolate</subject><subject>Dinoflagellida - classification</subject><subject>Dinoflagellida - genetics</subject><subject>Dinophyceae</subject><subject>DNA, Mitochondrial - genetics</subject><subject>DNA, Protozoan - genetics</subject><subject>evolution</subject><subject>genes</subject><subject>Genome, Mitochondrial - genetics</subject><subject>Genome, Protozoan - genetics</subject><subject>High-Throughput Nucleotide Sequencing</subject><subject>intergenic DNA</subject><subject>Mitochondria</subject><subject>mitochondrial DNA</subject><subject>mitochondrial genome</subject><subject>Non-coding DNA</subject><subject>Oxyrrhis marina</subject><subject>protists</subject><subject>Recombination</subject><subject>Ribosomal RNA</subject><subject>Sequence Analysis, DNA</subject><issn>1434-4610</issn><issn>1618-0941</issn><issn>1618-0941</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkU-PFCEQxYnRuOvoNzCGo5ceKaDp7ovJZv2bTNyLngkN1T1MumGFno3j1S8us716NF6AwKv3qPoR8hLYFhioN4ftbYqLz1vOuNwCV6yBR-QSFLQV6yQ8LmcpZCUVsAvyLOcDYyA71T4lF6JTTADwS_JrF8NYJTSOvvtyRTN-P2KwPow04R2aKdNljzSm0QT_0yw-BhqH-7vZL9HuY3DJm4mOGOKM1If7NzRpOlV9MsHuz17OhzhMZsRpMgvSmx-nlPY-09kkH8xz8mQoSfjiYd-Qbx_ef73-VO1uPn6-vtpVVnC2VO2ghFBt3cNgmBTKdA06qbgZrOyhU30DvOkBESyXxlg5OKuMFKJxNe-dFBvyevUtgytt5kXPPtvznwLGY9YCasnrlin1H9JiK2pelg2Rq9SmmHPCQd8mXxo7aWD6TEof9EpKn0nplVQpe_WQcOxndH-L_qApgrerAMtI7jwmna0vbND5hHbRLvp_J_wGrO-ooA</recordid><startdate>20241201</startdate><enddate>20241201</enddate><creator>Haro, Ronie</creator><creator>Walunjkar, Nikita</creator><creator>Jorapur, Soham</creator><creator>Slamovits, Claudio H.</creator><general>Elsevier GmbH</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope></search><sort><creationdate>20241201</creationdate><title>Long-read DNA sequencing reveals the organization of the mitochondrial genome in the early-branching dinoflagellate Oxyrrhis marina</title><author>Haro, Ronie ; Walunjkar, Nikita ; Jorapur, Soham ; Slamovits, Claudio H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c320t-8f633685b1fa0436a97ed462afc4b196b7127b1ee1c24aac4fdc6a4337d52bd43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Alveolate</topic><topic>Dinoflagellida - classification</topic><topic>Dinoflagellida - genetics</topic><topic>Dinophyceae</topic><topic>DNA, Mitochondrial - genetics</topic><topic>DNA, Protozoan - genetics</topic><topic>evolution</topic><topic>genes</topic><topic>Genome, Mitochondrial - genetics</topic><topic>Genome, Protozoan - genetics</topic><topic>High-Throughput Nucleotide Sequencing</topic><topic>intergenic DNA</topic><topic>Mitochondria</topic><topic>mitochondrial DNA</topic><topic>mitochondrial genome</topic><topic>Non-coding DNA</topic><topic>Oxyrrhis marina</topic><topic>protists</topic><topic>Recombination</topic><topic>Ribosomal RNA</topic><topic>Sequence Analysis, DNA</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Haro, Ronie</creatorcontrib><creatorcontrib>Walunjkar, Nikita</creatorcontrib><creatorcontrib>Jorapur, Soham</creatorcontrib><creatorcontrib>Slamovits, Claudio H.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Protist</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Haro, Ronie</au><au>Walunjkar, Nikita</au><au>Jorapur, Soham</au><au>Slamovits, Claudio H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Long-read DNA sequencing reveals the organization of the mitochondrial genome in the early-branching dinoflagellate Oxyrrhis marina</atitle><jtitle>Protist</jtitle><addtitle>Protist</addtitle><date>2024-12-01</date><risdate>2024</risdate><volume>175</volume><issue>6</issue><spage>126071</spage><pages>126071-</pages><artnum>126071</artnum><issn>1434-4610</issn><issn>1618-0941</issn><eissn>1618-0941</eissn><abstract>The mitochondrial genomes of dinoflagellate protists are remarkable for their highly fragmented and heterogeneous organization. Early attempts to determine their structure without ‘next-generation’ DNA sequencing failed to recover a defined genome. Still, it coincided in showing that the proteins coding genes, three in total, and parts of the ribosomal RNA genes were spread across a diffuse assortment of small linear fragments. In contrast, a recent study employed Illumina sequencing to assemble a 326 kbp long single-molecule, circular mitochondrial genome in the symbiotic dinoflagellate Breviolum minutum. Here, we used a combination of short- and long-read massively-parallel DNA sequencing to analyze further the mitochondrial DNA of the early-branching dinoflagellate Oxyrrhis marina. We found that the mitochondrial genome of O. marina consists of 3 linear chromosomes sized 15.9, 33.8 and 40.6 kbp for a total of 90.3 kbp. It contains the cox1, cox3 and cob genes, the same three proteins encoded in the mitochondrion of all myzozoans (Apicomplexa and Dinophyceae), some fragments of ribosomal RNA genes as well as many non-functional gene fragments and extensive noncoding DNA. Our analysis unveiled segments syntenic patterns and rearrangements encompassing coding and non-coding regions, suggesting that recombination is a pervasive process driving the evolution of these genomes. •The organization of mitogenomes in dinoflagellates has been elusive due to extensive fragmentation, redundancy and recombination.•Long-read DNA sequencing enabled the assembly of a 90 kbp mitogenome in Oxyrrhis marina, an early-diverging dinoflagellate.•The genome consists of three linear molecules encoding three proteins, rRNA fragments, no tRNA genes, non-functional gene fragments, and noncoding DNA.•Excess of noncoding DNA appears to originate from the mutational degradation of gene duplicates.</abstract><cop>Germany</cop><pub>Elsevier GmbH</pub><pmid>39603112</pmid><doi>10.1016/j.protis.2024.126071</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1434-4610
ispartof Protist, 2024-12, Vol.175 (6), p.126071, Article 126071
issn 1434-4610
1618-0941
1618-0941
language eng
recordid cdi_proquest_miscellaneous_3133735237
source MEDLINE; Elsevier ScienceDirect Journals
subjects Alveolate
Dinoflagellida - classification
Dinoflagellida - genetics
Dinophyceae
DNA, Mitochondrial - genetics
DNA, Protozoan - genetics
evolution
genes
Genome, Mitochondrial - genetics
Genome, Protozoan - genetics
High-Throughput Nucleotide Sequencing
intergenic DNA
Mitochondria
mitochondrial DNA
mitochondrial genome
Non-coding DNA
Oxyrrhis marina
protists
Recombination
Ribosomal RNA
Sequence Analysis, DNA
title Long-read DNA sequencing reveals the organization of the mitochondrial genome in the early-branching dinoflagellate Oxyrrhis marina
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T11%3A52%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Long-read%20DNA%20sequencing%20reveals%20the%20organization%20of%20the%20mitochondrial%20genome%20in%20the%20early-branching%20dinoflagellate%20Oxyrrhis%20marina&rft.jtitle=Protist&rft.au=Haro,%20Ronie&rft.date=2024-12-01&rft.volume=175&rft.issue=6&rft.spage=126071&rft.pages=126071-&rft.artnum=126071&rft.issn=1434-4610&rft.eissn=1618-0941&rft_id=info:doi/10.1016/j.protis.2024.126071&rft_dat=%3Cproquest_cross%3E3133735237%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3133735237&rft_id=info:pmid/39603112&rft_els_id=S1434461024000634&rfr_iscdi=true