Thioether-Functionalized Cellulose for the Fabrication of Oxidation-Responsive Biomaterial Coatings and Films

Biomaterial coatings and films can prevent premature failure and enhance the performance of chronically implanted medical devices. However, current hydrophilic polymer coatings and films have significant drawbacks, including swelling and delamination. To address these issues, hydroxyethyl cellulose...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced healthcare materials 2024-11, p.e2403021
Hauptverfasser: DuBois, Eric M, Herrema, Kate E, Simkulet, Matthew G, Hassan, Laboni F, O'Connor, Payton R, Sen, Riya, O'Shea, Timothy M
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page e2403021
container_title Advanced healthcare materials
container_volume
creator DuBois, Eric M
Herrema, Kate E
Simkulet, Matthew G
Hassan, Laboni F
O'Connor, Payton R
Sen, Riya
O'Shea, Timothy M
description Biomaterial coatings and films can prevent premature failure and enhance the performance of chronically implanted medical devices. However, current hydrophilic polymer coatings and films have significant drawbacks, including swelling and delamination. To address these issues, hydroxyethyl cellulose is modified with thioether groups to generate an oxidation-responsive polymer, HEC . HEC readily dissolves in green solvents and can be fabricated as coatings or films with tunable thicknesses. HEC coatings effectively scavenge hydrogen peroxide, resulting in the conversion of thioether groups to sulfoxide groups on the polymer chain. Oxidation-driven, hydrophobic-to-hydrophilic transitions that are isolated to the surface of HEC coatings under physiologically relevant conditions increase wettability, decrease stiffness, and reduce protein adsorption to generate a non-fouling interface with minimal coating delamination or swelling. HEC can be used in diverse optical applications and permits oxidation-responsive, controlled drug release. HEC films are non-resorbable in vivo and evoke minimal foreign body responses. These results highlight the versatility of HEC and support its incorporation into chronically implanted medical devices.
doi_str_mv 10.1002/adhm.202403021
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_3133734669</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3133734669</sourcerecordid><originalsourceid>FETCH-LOGICAL-p181t-77dba8c94334128c66bbec8fba4ac4d9a542c3f2005492a595bfc497b40e628f3</originalsourceid><addsrcrecordid>eNpNkM1LxDAQxYMo7rLu1aPk6KVrvpo2Ry1WhYUFWc9lkqY20ja1aUX96626gnOZ93g_Bt4gdE7JhhLCrqCs2w0jTBBOGD1CS0YVi5iM1fE_vUDrEF7IPDKmMqWnaMGVJEIStUTtvnbejrUdonzqzOh8B437tCXObNNMjQ8WV37AM4Fz0IMz8M1gX-Hduyt_TPRoQ--74N4svnG-hdEODhqc-TnungOGrsS5a9pwhk4qaIJdH_YKPeW3--w-2u7uHrLrbdTTlI5RkpQaUqME54Ky1EiptTVppUGAEaWCWDDDK0ZILBSDWMW6MkIlWhArWVrxFbr8vdsP_nWyYSxaF8xcCDrrp1BwynnChZRqRi8O6KRbWxb94FoYPoq_F_Ev2Qdq_w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3133734669</pqid></control><display><type>article</type><title>Thioether-Functionalized Cellulose for the Fabrication of Oxidation-Responsive Biomaterial Coatings and Films</title><source>Wiley Journals</source><creator>DuBois, Eric M ; Herrema, Kate E ; Simkulet, Matthew G ; Hassan, Laboni F ; O'Connor, Payton R ; Sen, Riya ; O'Shea, Timothy M</creator><creatorcontrib>DuBois, Eric M ; Herrema, Kate E ; Simkulet, Matthew G ; Hassan, Laboni F ; O'Connor, Payton R ; Sen, Riya ; O'Shea, Timothy M</creatorcontrib><description>Biomaterial coatings and films can prevent premature failure and enhance the performance of chronically implanted medical devices. However, current hydrophilic polymer coatings and films have significant drawbacks, including swelling and delamination. To address these issues, hydroxyethyl cellulose is modified with thioether groups to generate an oxidation-responsive polymer, HEC . HEC readily dissolves in green solvents and can be fabricated as coatings or films with tunable thicknesses. HEC coatings effectively scavenge hydrogen peroxide, resulting in the conversion of thioether groups to sulfoxide groups on the polymer chain. Oxidation-driven, hydrophobic-to-hydrophilic transitions that are isolated to the surface of HEC coatings under physiologically relevant conditions increase wettability, decrease stiffness, and reduce protein adsorption to generate a non-fouling interface with minimal coating delamination or swelling. HEC can be used in diverse optical applications and permits oxidation-responsive, controlled drug release. HEC films are non-resorbable in vivo and evoke minimal foreign body responses. These results highlight the versatility of HEC and support its incorporation into chronically implanted medical devices.</description><identifier>ISSN: 2192-2659</identifier><identifier>EISSN: 2192-2659</identifier><identifier>DOI: 10.1002/adhm.202403021</identifier><identifier>PMID: 39604609</identifier><language>eng</language><publisher>Germany</publisher><ispartof>Advanced healthcare materials, 2024-11, p.e2403021</ispartof><rights>2024 Wiley‐VCH GmbH.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-0847-9867 ; 0009-0003-4434-0007 ; 0000-0003-3929-3798 ; 0000-0001-9863-9870 ; 0000-0002-9290-970X ; 0000-0002-0812-1179 ; 0000-0001-6399-3060</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39604609$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>DuBois, Eric M</creatorcontrib><creatorcontrib>Herrema, Kate E</creatorcontrib><creatorcontrib>Simkulet, Matthew G</creatorcontrib><creatorcontrib>Hassan, Laboni F</creatorcontrib><creatorcontrib>O'Connor, Payton R</creatorcontrib><creatorcontrib>Sen, Riya</creatorcontrib><creatorcontrib>O'Shea, Timothy M</creatorcontrib><title>Thioether-Functionalized Cellulose for the Fabrication of Oxidation-Responsive Biomaterial Coatings and Films</title><title>Advanced healthcare materials</title><addtitle>Adv Healthc Mater</addtitle><description>Biomaterial coatings and films can prevent premature failure and enhance the performance of chronically implanted medical devices. However, current hydrophilic polymer coatings and films have significant drawbacks, including swelling and delamination. To address these issues, hydroxyethyl cellulose is modified with thioether groups to generate an oxidation-responsive polymer, HEC . HEC readily dissolves in green solvents and can be fabricated as coatings or films with tunable thicknesses. HEC coatings effectively scavenge hydrogen peroxide, resulting in the conversion of thioether groups to sulfoxide groups on the polymer chain. Oxidation-driven, hydrophobic-to-hydrophilic transitions that are isolated to the surface of HEC coatings under physiologically relevant conditions increase wettability, decrease stiffness, and reduce protein adsorption to generate a non-fouling interface with minimal coating delamination or swelling. HEC can be used in diverse optical applications and permits oxidation-responsive, controlled drug release. HEC films are non-resorbable in vivo and evoke minimal foreign body responses. These results highlight the versatility of HEC and support its incorporation into chronically implanted medical devices.</description><issn>2192-2659</issn><issn>2192-2659</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpNkM1LxDAQxYMo7rLu1aPk6KVrvpo2Ry1WhYUFWc9lkqY20ja1aUX96626gnOZ93g_Bt4gdE7JhhLCrqCs2w0jTBBOGD1CS0YVi5iM1fE_vUDrEF7IPDKmMqWnaMGVJEIStUTtvnbejrUdonzqzOh8B437tCXObNNMjQ8WV37AM4Fz0IMz8M1gX-Hduyt_TPRoQ--74N4svnG-hdEODhqc-TnungOGrsS5a9pwhk4qaIJdH_YKPeW3--w-2u7uHrLrbdTTlI5RkpQaUqME54Ky1EiptTVppUGAEaWCWDDDK0ZILBSDWMW6MkIlWhArWVrxFbr8vdsP_nWyYSxaF8xcCDrrp1BwynnChZRqRi8O6KRbWxb94FoYPoq_F_Ev2Qdq_w</recordid><startdate>20241127</startdate><enddate>20241127</enddate><creator>DuBois, Eric M</creator><creator>Herrema, Kate E</creator><creator>Simkulet, Matthew G</creator><creator>Hassan, Laboni F</creator><creator>O'Connor, Payton R</creator><creator>Sen, Riya</creator><creator>O'Shea, Timothy M</creator><scope>NPM</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-0847-9867</orcidid><orcidid>https://orcid.org/0009-0003-4434-0007</orcidid><orcidid>https://orcid.org/0000-0003-3929-3798</orcidid><orcidid>https://orcid.org/0000-0001-9863-9870</orcidid><orcidid>https://orcid.org/0000-0002-9290-970X</orcidid><orcidid>https://orcid.org/0000-0002-0812-1179</orcidid><orcidid>https://orcid.org/0000-0001-6399-3060</orcidid></search><sort><creationdate>20241127</creationdate><title>Thioether-Functionalized Cellulose for the Fabrication of Oxidation-Responsive Biomaterial Coatings and Films</title><author>DuBois, Eric M ; Herrema, Kate E ; Simkulet, Matthew G ; Hassan, Laboni F ; O'Connor, Payton R ; Sen, Riya ; O'Shea, Timothy M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p181t-77dba8c94334128c66bbec8fba4ac4d9a542c3f2005492a595bfc497b40e628f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>DuBois, Eric M</creatorcontrib><creatorcontrib>Herrema, Kate E</creatorcontrib><creatorcontrib>Simkulet, Matthew G</creatorcontrib><creatorcontrib>Hassan, Laboni F</creatorcontrib><creatorcontrib>O'Connor, Payton R</creatorcontrib><creatorcontrib>Sen, Riya</creatorcontrib><creatorcontrib>O'Shea, Timothy M</creatorcontrib><collection>PubMed</collection><collection>MEDLINE - Academic</collection><jtitle>Advanced healthcare materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>DuBois, Eric M</au><au>Herrema, Kate E</au><au>Simkulet, Matthew G</au><au>Hassan, Laboni F</au><au>O'Connor, Payton R</au><au>Sen, Riya</au><au>O'Shea, Timothy M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thioether-Functionalized Cellulose for the Fabrication of Oxidation-Responsive Biomaterial Coatings and Films</atitle><jtitle>Advanced healthcare materials</jtitle><addtitle>Adv Healthc Mater</addtitle><date>2024-11-27</date><risdate>2024</risdate><spage>e2403021</spage><pages>e2403021-</pages><issn>2192-2659</issn><eissn>2192-2659</eissn><abstract>Biomaterial coatings and films can prevent premature failure and enhance the performance of chronically implanted medical devices. However, current hydrophilic polymer coatings and films have significant drawbacks, including swelling and delamination. To address these issues, hydroxyethyl cellulose is modified with thioether groups to generate an oxidation-responsive polymer, HEC . HEC readily dissolves in green solvents and can be fabricated as coatings or films with tunable thicknesses. HEC coatings effectively scavenge hydrogen peroxide, resulting in the conversion of thioether groups to sulfoxide groups on the polymer chain. Oxidation-driven, hydrophobic-to-hydrophilic transitions that are isolated to the surface of HEC coatings under physiologically relevant conditions increase wettability, decrease stiffness, and reduce protein adsorption to generate a non-fouling interface with minimal coating delamination or swelling. HEC can be used in diverse optical applications and permits oxidation-responsive, controlled drug release. HEC films are non-resorbable in vivo and evoke minimal foreign body responses. These results highlight the versatility of HEC and support its incorporation into chronically implanted medical devices.</abstract><cop>Germany</cop><pmid>39604609</pmid><doi>10.1002/adhm.202403021</doi><orcidid>https://orcid.org/0000-0002-0847-9867</orcidid><orcidid>https://orcid.org/0009-0003-4434-0007</orcidid><orcidid>https://orcid.org/0000-0003-3929-3798</orcidid><orcidid>https://orcid.org/0000-0001-9863-9870</orcidid><orcidid>https://orcid.org/0000-0002-9290-970X</orcidid><orcidid>https://orcid.org/0000-0002-0812-1179</orcidid><orcidid>https://orcid.org/0000-0001-6399-3060</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2192-2659
ispartof Advanced healthcare materials, 2024-11, p.e2403021
issn 2192-2659
2192-2659
language eng
recordid cdi_proquest_miscellaneous_3133734669
source Wiley Journals
title Thioether-Functionalized Cellulose for the Fabrication of Oxidation-Responsive Biomaterial Coatings and Films
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T00%3A40%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thioether-Functionalized%20Cellulose%20for%20the%20Fabrication%20of%20Oxidation-Responsive%20Biomaterial%20Coatings%20and%20Films&rft.jtitle=Advanced%20healthcare%20materials&rft.au=DuBois,%20Eric%20M&rft.date=2024-11-27&rft.spage=e2403021&rft.pages=e2403021-&rft.issn=2192-2659&rft.eissn=2192-2659&rft_id=info:doi/10.1002/adhm.202403021&rft_dat=%3Cproquest_pubme%3E3133734669%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3133734669&rft_id=info:pmid/39604609&rfr_iscdi=true