Pan-genome bridges wheat structural variations with habitat and breeding

Wheat is the second largest food crop with a very good breeding system and pedigree record in China. Investigating the genomic footprints of wheat cultivars will unveil potential avenues for future breeding efforts . Here we report chromosome-level genome assemblies of 17 wheat cultivars that chroni...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature (London) 2024-11
Hauptverfasser: Jiao, Chengzhi, Xie, Xiaoming, Hao, Chenyang, Chen, Liyang, Xie, Yuxin, Garg, Vanika, Zhao, Li, Wang, Zihao, Zhang, Yuqi, Li, Tian, Fu, Junjie, Chitikineni, Annapurna, Hou, Jian, Liu, Hongxia, Dwivedi, Girish, Liu, Xu, Jia, Jizeng, Mao, Long, Wang, Xiue, Appels, Rudi, Varshney, Rajeev K, Guo, Weilong, Zhang, Xueyong
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title Nature (London)
container_volume
creator Jiao, Chengzhi
Xie, Xiaoming
Hao, Chenyang
Chen, Liyang
Xie, Yuxin
Garg, Vanika
Zhao, Li
Wang, Zihao
Zhang, Yuqi
Li, Tian
Fu, Junjie
Chitikineni, Annapurna
Hou, Jian
Liu, Hongxia
Dwivedi, Girish
Liu, Xu
Jia, Jizeng
Mao, Long
Wang, Xiue
Appels, Rudi
Varshney, Rajeev K
Guo, Weilong
Zhang, Xueyong
description Wheat is the second largest food crop with a very good breeding system and pedigree record in China. Investigating the genomic footprints of wheat cultivars will unveil potential avenues for future breeding efforts . Here we report chromosome-level genome assemblies of 17 wheat cultivars that chronicle the breeding history of China. Comparative genomic analysis uncovered a wealth of structural rearrangements, identifying 249,976 structural variations with 49.03% (122,567) longer than 5 kb. Cultivars developed in 1980s displayed significant accumulations of structural variations, a pattern linked to the extensive incorporation of European and American varieties into breeding programmes of that era. We further proved that structural variations in the centromere-proximal regions are associated with a reduction of crossover events. We showed that common wheat evolved from spring to winter types via mutations and duplications of the VRN-A1 gene as an adaptation strategy to a changing environment. We confirmed shifts in wheat cultivars linked to dietary preferences, migration and cultural integration in Northwest China. We identified large presence or absence variations of pSc200 tandem repeats on the 1RS terminal, suggesting its own rapid evolution in the wheat genome. The high-quality genome assemblies of 17 representatives developed and their good complementarity to the 10+ pan-genomes offer a robust platform for future genomics-assisted breeding in wheat.
doi_str_mv 10.1038/s41586-024-08277-0
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_3133734223</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3133734223</sourcerecordid><originalsourceid>FETCH-LOGICAL-p141t-63474ae1d36939b1fc8dc7287433608b715398b2b5aa2a3b1a256a01834fb1633</originalsourceid><addsrcrecordid>eNpNj09LAzEUxIMotla_gAfZo5doXl42yR6lWCsU9KDn5WU3bSP7p26yit_eihU8zcD8ZmAYuwRxAwLtbVSQW82FVFxYaQwXR2wKymiutDXH__yEncX4JoTIwahTNsFCC2VQT9nymTq-8V3f-swNod74mH1uPaUspmGs0jhQk33QECiFvttnIW2zLbmQ9gh19b7kfR26zTk7WVMT_cVBZ-x1cf8yX_LV08Pj_G7Fd6AgcY3KKPJQoy6wcLCubF0ZaY1C1MI6AzkW1kmXE0lCByRzTQIsqrUDjThj17-7u6F_H31MZRti5ZuGOt-PsURANKik_EGvDujoWl-XuyG0NHyVf-_xGy67W6w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3133734223</pqid></control><display><type>article</type><title>Pan-genome bridges wheat structural variations with habitat and breeding</title><source>Nature</source><source>Alma/SFX Local Collection</source><creator>Jiao, Chengzhi ; Xie, Xiaoming ; Hao, Chenyang ; Chen, Liyang ; Xie, Yuxin ; Garg, Vanika ; Zhao, Li ; Wang, Zihao ; Zhang, Yuqi ; Li, Tian ; Fu, Junjie ; Chitikineni, Annapurna ; Hou, Jian ; Liu, Hongxia ; Dwivedi, Girish ; Liu, Xu ; Jia, Jizeng ; Mao, Long ; Wang, Xiue ; Appels, Rudi ; Varshney, Rajeev K ; Guo, Weilong ; Zhang, Xueyong</creator><creatorcontrib>Jiao, Chengzhi ; Xie, Xiaoming ; Hao, Chenyang ; Chen, Liyang ; Xie, Yuxin ; Garg, Vanika ; Zhao, Li ; Wang, Zihao ; Zhang, Yuqi ; Li, Tian ; Fu, Junjie ; Chitikineni, Annapurna ; Hou, Jian ; Liu, Hongxia ; Dwivedi, Girish ; Liu, Xu ; Jia, Jizeng ; Mao, Long ; Wang, Xiue ; Appels, Rudi ; Varshney, Rajeev K ; Guo, Weilong ; Zhang, Xueyong</creatorcontrib><description>Wheat is the second largest food crop with a very good breeding system and pedigree record in China. Investigating the genomic footprints of wheat cultivars will unveil potential avenues for future breeding efforts . Here we report chromosome-level genome assemblies of 17 wheat cultivars that chronicle the breeding history of China. Comparative genomic analysis uncovered a wealth of structural rearrangements, identifying 249,976 structural variations with 49.03% (122,567) longer than 5 kb. Cultivars developed in 1980s displayed significant accumulations of structural variations, a pattern linked to the extensive incorporation of European and American varieties into breeding programmes of that era. We further proved that structural variations in the centromere-proximal regions are associated with a reduction of crossover events. We showed that common wheat evolved from spring to winter types via mutations and duplications of the VRN-A1 gene as an adaptation strategy to a changing environment. We confirmed shifts in wheat cultivars linked to dietary preferences, migration and cultural integration in Northwest China. We identified large presence or absence variations of pSc200 tandem repeats on the 1RS terminal, suggesting its own rapid evolution in the wheat genome. The high-quality genome assemblies of 17 representatives developed and their good complementarity to the 10+ pan-genomes offer a robust platform for future genomics-assisted breeding in wheat.</description><identifier>ISSN: 1476-4687</identifier><identifier>EISSN: 1476-4687</identifier><identifier>DOI: 10.1038/s41586-024-08277-0</identifier><identifier>PMID: 39604736</identifier><language>eng</language><publisher>England</publisher><ispartof>Nature (London), 2024-11</ispartof><rights>2024. The Author(s), under exclusive licence to Springer Nature Limited.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-4702-2392 ; 0000-0002-4562-9131 ; 0000-0001-5199-1359 ; 0000-0001-6181-5156 ; 0000-0002-5242-1910 ; 0000-0002-5912-3270 ; 0000-0002-5639-7305 ; 0000-0001-9307-4655 ; 0000-0002-7925-4964 ; 0000-0002-7037-5217</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39604736$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jiao, Chengzhi</creatorcontrib><creatorcontrib>Xie, Xiaoming</creatorcontrib><creatorcontrib>Hao, Chenyang</creatorcontrib><creatorcontrib>Chen, Liyang</creatorcontrib><creatorcontrib>Xie, Yuxin</creatorcontrib><creatorcontrib>Garg, Vanika</creatorcontrib><creatorcontrib>Zhao, Li</creatorcontrib><creatorcontrib>Wang, Zihao</creatorcontrib><creatorcontrib>Zhang, Yuqi</creatorcontrib><creatorcontrib>Li, Tian</creatorcontrib><creatorcontrib>Fu, Junjie</creatorcontrib><creatorcontrib>Chitikineni, Annapurna</creatorcontrib><creatorcontrib>Hou, Jian</creatorcontrib><creatorcontrib>Liu, Hongxia</creatorcontrib><creatorcontrib>Dwivedi, Girish</creatorcontrib><creatorcontrib>Liu, Xu</creatorcontrib><creatorcontrib>Jia, Jizeng</creatorcontrib><creatorcontrib>Mao, Long</creatorcontrib><creatorcontrib>Wang, Xiue</creatorcontrib><creatorcontrib>Appels, Rudi</creatorcontrib><creatorcontrib>Varshney, Rajeev K</creatorcontrib><creatorcontrib>Guo, Weilong</creatorcontrib><creatorcontrib>Zhang, Xueyong</creatorcontrib><title>Pan-genome bridges wheat structural variations with habitat and breeding</title><title>Nature (London)</title><addtitle>Nature</addtitle><description>Wheat is the second largest food crop with a very good breeding system and pedigree record in China. Investigating the genomic footprints of wheat cultivars will unveil potential avenues for future breeding efforts . Here we report chromosome-level genome assemblies of 17 wheat cultivars that chronicle the breeding history of China. Comparative genomic analysis uncovered a wealth of structural rearrangements, identifying 249,976 structural variations with 49.03% (122,567) longer than 5 kb. Cultivars developed in 1980s displayed significant accumulations of structural variations, a pattern linked to the extensive incorporation of European and American varieties into breeding programmes of that era. We further proved that structural variations in the centromere-proximal regions are associated with a reduction of crossover events. We showed that common wheat evolved from spring to winter types via mutations and duplications of the VRN-A1 gene as an adaptation strategy to a changing environment. We confirmed shifts in wheat cultivars linked to dietary preferences, migration and cultural integration in Northwest China. We identified large presence or absence variations of pSc200 tandem repeats on the 1RS terminal, suggesting its own rapid evolution in the wheat genome. The high-quality genome assemblies of 17 representatives developed and their good complementarity to the 10+ pan-genomes offer a robust platform for future genomics-assisted breeding in wheat.</description><issn>1476-4687</issn><issn>1476-4687</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpNj09LAzEUxIMotla_gAfZo5doXl42yR6lWCsU9KDn5WU3bSP7p26yit_eihU8zcD8ZmAYuwRxAwLtbVSQW82FVFxYaQwXR2wKymiutDXH__yEncX4JoTIwahTNsFCC2VQT9nymTq-8V3f-swNod74mH1uPaUspmGs0jhQk33QECiFvttnIW2zLbmQ9gh19b7kfR26zTk7WVMT_cVBZ-x1cf8yX_LV08Pj_G7Fd6AgcY3KKPJQoy6wcLCubF0ZaY1C1MI6AzkW1kmXE0lCByRzTQIsqrUDjThj17-7u6F_H31MZRti5ZuGOt-PsURANKik_EGvDujoWl-XuyG0NHyVf-_xGy67W6w</recordid><startdate>20241127</startdate><enddate>20241127</enddate><creator>Jiao, Chengzhi</creator><creator>Xie, Xiaoming</creator><creator>Hao, Chenyang</creator><creator>Chen, Liyang</creator><creator>Xie, Yuxin</creator><creator>Garg, Vanika</creator><creator>Zhao, Li</creator><creator>Wang, Zihao</creator><creator>Zhang, Yuqi</creator><creator>Li, Tian</creator><creator>Fu, Junjie</creator><creator>Chitikineni, Annapurna</creator><creator>Hou, Jian</creator><creator>Liu, Hongxia</creator><creator>Dwivedi, Girish</creator><creator>Liu, Xu</creator><creator>Jia, Jizeng</creator><creator>Mao, Long</creator><creator>Wang, Xiue</creator><creator>Appels, Rudi</creator><creator>Varshney, Rajeev K</creator><creator>Guo, Weilong</creator><creator>Zhang, Xueyong</creator><scope>NPM</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-4702-2392</orcidid><orcidid>https://orcid.org/0000-0002-4562-9131</orcidid><orcidid>https://orcid.org/0000-0001-5199-1359</orcidid><orcidid>https://orcid.org/0000-0001-6181-5156</orcidid><orcidid>https://orcid.org/0000-0002-5242-1910</orcidid><orcidid>https://orcid.org/0000-0002-5912-3270</orcidid><orcidid>https://orcid.org/0000-0002-5639-7305</orcidid><orcidid>https://orcid.org/0000-0001-9307-4655</orcidid><orcidid>https://orcid.org/0000-0002-7925-4964</orcidid><orcidid>https://orcid.org/0000-0002-7037-5217</orcidid></search><sort><creationdate>20241127</creationdate><title>Pan-genome bridges wheat structural variations with habitat and breeding</title><author>Jiao, Chengzhi ; Xie, Xiaoming ; Hao, Chenyang ; Chen, Liyang ; Xie, Yuxin ; Garg, Vanika ; Zhao, Li ; Wang, Zihao ; Zhang, Yuqi ; Li, Tian ; Fu, Junjie ; Chitikineni, Annapurna ; Hou, Jian ; Liu, Hongxia ; Dwivedi, Girish ; Liu, Xu ; Jia, Jizeng ; Mao, Long ; Wang, Xiue ; Appels, Rudi ; Varshney, Rajeev K ; Guo, Weilong ; Zhang, Xueyong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p141t-63474ae1d36939b1fc8dc7287433608b715398b2b5aa2a3b1a256a01834fb1633</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jiao, Chengzhi</creatorcontrib><creatorcontrib>Xie, Xiaoming</creatorcontrib><creatorcontrib>Hao, Chenyang</creatorcontrib><creatorcontrib>Chen, Liyang</creatorcontrib><creatorcontrib>Xie, Yuxin</creatorcontrib><creatorcontrib>Garg, Vanika</creatorcontrib><creatorcontrib>Zhao, Li</creatorcontrib><creatorcontrib>Wang, Zihao</creatorcontrib><creatorcontrib>Zhang, Yuqi</creatorcontrib><creatorcontrib>Li, Tian</creatorcontrib><creatorcontrib>Fu, Junjie</creatorcontrib><creatorcontrib>Chitikineni, Annapurna</creatorcontrib><creatorcontrib>Hou, Jian</creatorcontrib><creatorcontrib>Liu, Hongxia</creatorcontrib><creatorcontrib>Dwivedi, Girish</creatorcontrib><creatorcontrib>Liu, Xu</creatorcontrib><creatorcontrib>Jia, Jizeng</creatorcontrib><creatorcontrib>Mao, Long</creatorcontrib><creatorcontrib>Wang, Xiue</creatorcontrib><creatorcontrib>Appels, Rudi</creatorcontrib><creatorcontrib>Varshney, Rajeev K</creatorcontrib><creatorcontrib>Guo, Weilong</creatorcontrib><creatorcontrib>Zhang, Xueyong</creatorcontrib><collection>PubMed</collection><collection>MEDLINE - Academic</collection><jtitle>Nature (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jiao, Chengzhi</au><au>Xie, Xiaoming</au><au>Hao, Chenyang</au><au>Chen, Liyang</au><au>Xie, Yuxin</au><au>Garg, Vanika</au><au>Zhao, Li</au><au>Wang, Zihao</au><au>Zhang, Yuqi</au><au>Li, Tian</au><au>Fu, Junjie</au><au>Chitikineni, Annapurna</au><au>Hou, Jian</au><au>Liu, Hongxia</au><au>Dwivedi, Girish</au><au>Liu, Xu</au><au>Jia, Jizeng</au><au>Mao, Long</au><au>Wang, Xiue</au><au>Appels, Rudi</au><au>Varshney, Rajeev K</au><au>Guo, Weilong</au><au>Zhang, Xueyong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Pan-genome bridges wheat structural variations with habitat and breeding</atitle><jtitle>Nature (London)</jtitle><addtitle>Nature</addtitle><date>2024-11-27</date><risdate>2024</risdate><issn>1476-4687</issn><eissn>1476-4687</eissn><abstract>Wheat is the second largest food crop with a very good breeding system and pedigree record in China. Investigating the genomic footprints of wheat cultivars will unveil potential avenues for future breeding efforts . Here we report chromosome-level genome assemblies of 17 wheat cultivars that chronicle the breeding history of China. Comparative genomic analysis uncovered a wealth of structural rearrangements, identifying 249,976 structural variations with 49.03% (122,567) longer than 5 kb. Cultivars developed in 1980s displayed significant accumulations of structural variations, a pattern linked to the extensive incorporation of European and American varieties into breeding programmes of that era. We further proved that structural variations in the centromere-proximal regions are associated with a reduction of crossover events. We showed that common wheat evolved from spring to winter types via mutations and duplications of the VRN-A1 gene as an adaptation strategy to a changing environment. We confirmed shifts in wheat cultivars linked to dietary preferences, migration and cultural integration in Northwest China. We identified large presence or absence variations of pSc200 tandem repeats on the 1RS terminal, suggesting its own rapid evolution in the wheat genome. The high-quality genome assemblies of 17 representatives developed and their good complementarity to the 10+ pan-genomes offer a robust platform for future genomics-assisted breeding in wheat.</abstract><cop>England</cop><pmid>39604736</pmid><doi>10.1038/s41586-024-08277-0</doi><orcidid>https://orcid.org/0000-0002-4702-2392</orcidid><orcidid>https://orcid.org/0000-0002-4562-9131</orcidid><orcidid>https://orcid.org/0000-0001-5199-1359</orcidid><orcidid>https://orcid.org/0000-0001-6181-5156</orcidid><orcidid>https://orcid.org/0000-0002-5242-1910</orcidid><orcidid>https://orcid.org/0000-0002-5912-3270</orcidid><orcidid>https://orcid.org/0000-0002-5639-7305</orcidid><orcidid>https://orcid.org/0000-0001-9307-4655</orcidid><orcidid>https://orcid.org/0000-0002-7925-4964</orcidid><orcidid>https://orcid.org/0000-0002-7037-5217</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1476-4687
ispartof Nature (London), 2024-11
issn 1476-4687
1476-4687
language eng
recordid cdi_proquest_miscellaneous_3133734223
source Nature; Alma/SFX Local Collection
title Pan-genome bridges wheat structural variations with habitat and breeding
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T00%3A38%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Pan-genome%20bridges%20wheat%20structural%20variations%20with%20habitat%20and%20breeding&rft.jtitle=Nature%20(London)&rft.au=Jiao,%20Chengzhi&rft.date=2024-11-27&rft.issn=1476-4687&rft.eissn=1476-4687&rft_id=info:doi/10.1038/s41586-024-08277-0&rft_dat=%3Cproquest_pubme%3E3133734223%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3133734223&rft_id=info:pmid/39604736&rfr_iscdi=true