Cold Sintering Halide-in-Oxide Composite Solid-State Electrolytes with Enhanced Ionic Conductivity

All-solid-state batteries (ASSBs) have attracted increasing attention for next-generation electrochemical energy storage due to their high energy density and enhanced safety, achieved through the use of nonflammable solid-state electrolytes (SSEs). Oxide-based SSEs, such as Li1.3Al0.3Ti1.7(PO4)3 (LA...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2024-12, Vol.16 (49), p.67635-67641
Hauptverfasser: Nie, Bo, Wang, Ta-Wei, Lee, Seok Woo, Sun, Hongtao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 67641
container_issue 49
container_start_page 67635
container_title ACS applied materials & interfaces
container_volume 16
creator Nie, Bo
Wang, Ta-Wei
Lee, Seok Woo
Sun, Hongtao
description All-solid-state batteries (ASSBs) have attracted increasing attention for next-generation electrochemical energy storage due to their high energy density and enhanced safety, achieved through the use of nonflammable solid-state electrolytes (SSEs). Oxide-based SSEs, such as Li1.3Al0.3Ti1.7(PO4)3 (LATP), are notable for their high ionic conductivity and excellent chemical and electrochemical oxidation stability. Nevertheless, their brittle mechanical properties and poor interface contact with electrode materials necessitate high-temperature and long-duration sintering or postcalcination processes, limiting their processability for real-world applications. Additionally, the formation of secondary phases can detrimentally affect the ionic conductivity of LATP electrolytes. Emerging halide-based SSEs offer reliable deformation for practical processing while maintaining high ionic conductivity. In this work, we report a transient liquid-assisted cold sintering process to integrate oxide-based LATP as the matrix and halide-based Li3InCl6 as the conductive boundary phase into a halide-in-oxide ceramic composite electrolyte at a low processing temperature of 150 °C. This composite structure significantly reduces interface resistance, effectively addressing ion-transport depletion across the boundaries between LATP particles. Consequently, the cosintered LATP-Li3InCl6 composite SSE exhibits a high ionic conductivity of 1.4 × 10–4 S cm–1 at ambient temperature. Furthermore, the symmetric Li|LATP-Li3InCl6·nDMF|Li cell demonstrates stable stripping and plating processes for 1600 h at 55 °C (0.1 mA cm–2) and 1200 h at 100 °C (1 mA cm–2). This work represents the first demonstration of halide–oxide ceramic composite SSEs that combine the advantages of oxides and halides for high-performance SSBs.
doi_str_mv 10.1021/acsami.4c13031
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3133413715</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3133413715</sourcerecordid><originalsourceid>FETCH-LOGICAL-a248t-62fb8a9325101d3478e6481ea4b467e3caff8c29b582af3de5318e4daf4cd0f53</originalsourceid><addsrcrecordid>eNqNkb1PwzAUxC0EouVjZUQZEVKKP1NnRFGBSpUYCnPk2C_gKrFL7AD970nV0g2J6Z30fnfDHUJXBE8IpuRO6aBaO-GaMMzIERqTnPNUUkGPD5rzEToLYYVxxigWp2jEcpETkeExqgrfmGRpXYTOurfkSTXWQGpd-vw9iKTw7doHGyFZ-uGTLqMa9KwBHTvfbCKE5MvG92Tm3pXTYJK5d1YPNmd6He2njZsLdFKrJsDl_p6j14fZS_GULp4f58X9IlWUy5hmtK6kyhkVBBPD-FRCxiUBxSueTYFpVddS07wSkqqaGRCMSOBG1VwbXAt2jm52uevOf_QQYtnaoKFplAPfh5IRwWmGpZD_QBnjhE3JNnWyQ3XnQ-igLtedbVW3KQkutxOUuwnK_QSD4Xqf3VctmAP-2_kA3O6AwViufN-5oZW_0n4AmCGRLw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3133413715</pqid></control><display><type>article</type><title>Cold Sintering Halide-in-Oxide Composite Solid-State Electrolytes with Enhanced Ionic Conductivity</title><source>ACS Publications</source><creator>Nie, Bo ; Wang, Ta-Wei ; Lee, Seok Woo ; Sun, Hongtao</creator><creatorcontrib>Nie, Bo ; Wang, Ta-Wei ; Lee, Seok Woo ; Sun, Hongtao</creatorcontrib><description>All-solid-state batteries (ASSBs) have attracted increasing attention for next-generation electrochemical energy storage due to their high energy density and enhanced safety, achieved through the use of nonflammable solid-state electrolytes (SSEs). Oxide-based SSEs, such as Li1.3Al0.3Ti1.7(PO4)3 (LATP), are notable for their high ionic conductivity and excellent chemical and electrochemical oxidation stability. Nevertheless, their brittle mechanical properties and poor interface contact with electrode materials necessitate high-temperature and long-duration sintering or postcalcination processes, limiting their processability for real-world applications. Additionally, the formation of secondary phases can detrimentally affect the ionic conductivity of LATP electrolytes. Emerging halide-based SSEs offer reliable deformation for practical processing while maintaining high ionic conductivity. In this work, we report a transient liquid-assisted cold sintering process to integrate oxide-based LATP as the matrix and halide-based Li3InCl6 as the conductive boundary phase into a halide-in-oxide ceramic composite electrolyte at a low processing temperature of 150 °C. This composite structure significantly reduces interface resistance, effectively addressing ion-transport depletion across the boundaries between LATP particles. Consequently, the cosintered LATP-Li3InCl6 composite SSE exhibits a high ionic conductivity of 1.4 × 10–4 S cm–1 at ambient temperature. Furthermore, the symmetric Li|LATP-Li3InCl6·nDMF|Li cell demonstrates stable stripping and plating processes for 1600 h at 55 °C (0.1 mA cm–2) and 1200 h at 100 °C (1 mA cm–2). This work represents the first demonstration of halide–oxide ceramic composite SSEs that combine the advantages of oxides and halides for high-performance SSBs.</description><identifier>ISSN: 1944-8244</identifier><identifier>ISSN: 1944-8252</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.4c13031</identifier><identifier>PMID: 39591560</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>ambient temperature ; brittleness ; ceramics ; cold ; deformation ; electrochemistry ; electrodes ; electrolytes ; energy ; energy density ; Energy, Environmental, and Catalysis Applications ; oxidative stability</subject><ispartof>ACS applied materials &amp; interfaces, 2024-12, Vol.16 (49), p.67635-67641</ispartof><rights>2024 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a248t-62fb8a9325101d3478e6481ea4b467e3caff8c29b582af3de5318e4daf4cd0f53</cites><orcidid>0000-0003-3259-6091</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsami.4c13031$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsami.4c13031$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2751,27055,27903,27904,56716,56766</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39591560$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Nie, Bo</creatorcontrib><creatorcontrib>Wang, Ta-Wei</creatorcontrib><creatorcontrib>Lee, Seok Woo</creatorcontrib><creatorcontrib>Sun, Hongtao</creatorcontrib><title>Cold Sintering Halide-in-Oxide Composite Solid-State Electrolytes with Enhanced Ionic Conductivity</title><title>ACS applied materials &amp; interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>All-solid-state batteries (ASSBs) have attracted increasing attention for next-generation electrochemical energy storage due to their high energy density and enhanced safety, achieved through the use of nonflammable solid-state electrolytes (SSEs). Oxide-based SSEs, such as Li1.3Al0.3Ti1.7(PO4)3 (LATP), are notable for their high ionic conductivity and excellent chemical and electrochemical oxidation stability. Nevertheless, their brittle mechanical properties and poor interface contact with electrode materials necessitate high-temperature and long-duration sintering or postcalcination processes, limiting their processability for real-world applications. Additionally, the formation of secondary phases can detrimentally affect the ionic conductivity of LATP electrolytes. Emerging halide-based SSEs offer reliable deformation for practical processing while maintaining high ionic conductivity. In this work, we report a transient liquid-assisted cold sintering process to integrate oxide-based LATP as the matrix and halide-based Li3InCl6 as the conductive boundary phase into a halide-in-oxide ceramic composite electrolyte at a low processing temperature of 150 °C. This composite structure significantly reduces interface resistance, effectively addressing ion-transport depletion across the boundaries between LATP particles. Consequently, the cosintered LATP-Li3InCl6 composite SSE exhibits a high ionic conductivity of 1.4 × 10–4 S cm–1 at ambient temperature. Furthermore, the symmetric Li|LATP-Li3InCl6·nDMF|Li cell demonstrates stable stripping and plating processes for 1600 h at 55 °C (0.1 mA cm–2) and 1200 h at 100 °C (1 mA cm–2). This work represents the first demonstration of halide–oxide ceramic composite SSEs that combine the advantages of oxides and halides for high-performance SSBs.</description><subject>ambient temperature</subject><subject>brittleness</subject><subject>ceramics</subject><subject>cold</subject><subject>deformation</subject><subject>electrochemistry</subject><subject>electrodes</subject><subject>electrolytes</subject><subject>energy</subject><subject>energy density</subject><subject>Energy, Environmental, and Catalysis Applications</subject><subject>oxidative stability</subject><issn>1944-8244</issn><issn>1944-8252</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqNkb1PwzAUxC0EouVjZUQZEVKKP1NnRFGBSpUYCnPk2C_gKrFL7AD970nV0g2J6Z30fnfDHUJXBE8IpuRO6aBaO-GaMMzIERqTnPNUUkGPD5rzEToLYYVxxigWp2jEcpETkeExqgrfmGRpXYTOurfkSTXWQGpd-vw9iKTw7doHGyFZ-uGTLqMa9KwBHTvfbCKE5MvG92Tm3pXTYJK5d1YPNmd6He2njZsLdFKrJsDl_p6j14fZS_GULp4f58X9IlWUy5hmtK6kyhkVBBPD-FRCxiUBxSueTYFpVddS07wSkqqaGRCMSOBG1VwbXAt2jm52uevOf_QQYtnaoKFplAPfh5IRwWmGpZD_QBnjhE3JNnWyQ3XnQ-igLtedbVW3KQkutxOUuwnK_QSD4Xqf3VctmAP-2_kA3O6AwViufN-5oZW_0n4AmCGRLw</recordid><startdate>20241211</startdate><enddate>20241211</enddate><creator>Nie, Bo</creator><creator>Wang, Ta-Wei</creator><creator>Lee, Seok Woo</creator><creator>Sun, Hongtao</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><orcidid>https://orcid.org/0000-0003-3259-6091</orcidid></search><sort><creationdate>20241211</creationdate><title>Cold Sintering Halide-in-Oxide Composite Solid-State Electrolytes with Enhanced Ionic Conductivity</title><author>Nie, Bo ; Wang, Ta-Wei ; Lee, Seok Woo ; Sun, Hongtao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a248t-62fb8a9325101d3478e6481ea4b467e3caff8c29b582af3de5318e4daf4cd0f53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>ambient temperature</topic><topic>brittleness</topic><topic>ceramics</topic><topic>cold</topic><topic>deformation</topic><topic>electrochemistry</topic><topic>electrodes</topic><topic>electrolytes</topic><topic>energy</topic><topic>energy density</topic><topic>Energy, Environmental, and Catalysis Applications</topic><topic>oxidative stability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nie, Bo</creatorcontrib><creatorcontrib>Wang, Ta-Wei</creatorcontrib><creatorcontrib>Lee, Seok Woo</creatorcontrib><creatorcontrib>Sun, Hongtao</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>ACS applied materials &amp; interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nie, Bo</au><au>Wang, Ta-Wei</au><au>Lee, Seok Woo</au><au>Sun, Hongtao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cold Sintering Halide-in-Oxide Composite Solid-State Electrolytes with Enhanced Ionic Conductivity</atitle><jtitle>ACS applied materials &amp; interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2024-12-11</date><risdate>2024</risdate><volume>16</volume><issue>49</issue><spage>67635</spage><epage>67641</epage><pages>67635-67641</pages><issn>1944-8244</issn><issn>1944-8252</issn><eissn>1944-8252</eissn><abstract>All-solid-state batteries (ASSBs) have attracted increasing attention for next-generation electrochemical energy storage due to their high energy density and enhanced safety, achieved through the use of nonflammable solid-state electrolytes (SSEs). Oxide-based SSEs, such as Li1.3Al0.3Ti1.7(PO4)3 (LATP), are notable for their high ionic conductivity and excellent chemical and electrochemical oxidation stability. Nevertheless, their brittle mechanical properties and poor interface contact with electrode materials necessitate high-temperature and long-duration sintering or postcalcination processes, limiting their processability for real-world applications. Additionally, the formation of secondary phases can detrimentally affect the ionic conductivity of LATP electrolytes. Emerging halide-based SSEs offer reliable deformation for practical processing while maintaining high ionic conductivity. In this work, we report a transient liquid-assisted cold sintering process to integrate oxide-based LATP as the matrix and halide-based Li3InCl6 as the conductive boundary phase into a halide-in-oxide ceramic composite electrolyte at a low processing temperature of 150 °C. This composite structure significantly reduces interface resistance, effectively addressing ion-transport depletion across the boundaries between LATP particles. Consequently, the cosintered LATP-Li3InCl6 composite SSE exhibits a high ionic conductivity of 1.4 × 10–4 S cm–1 at ambient temperature. Furthermore, the symmetric Li|LATP-Li3InCl6·nDMF|Li cell demonstrates stable stripping and plating processes for 1600 h at 55 °C (0.1 mA cm–2) and 1200 h at 100 °C (1 mA cm–2). This work represents the first demonstration of halide–oxide ceramic composite SSEs that combine the advantages of oxides and halides for high-performance SSBs.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>39591560</pmid><doi>10.1021/acsami.4c13031</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0003-3259-6091</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1944-8244
ispartof ACS applied materials & interfaces, 2024-12, Vol.16 (49), p.67635-67641
issn 1944-8244
1944-8252
1944-8252
language eng
recordid cdi_proquest_miscellaneous_3133413715
source ACS Publications
subjects ambient temperature
brittleness
ceramics
cold
deformation
electrochemistry
electrodes
electrolytes
energy
energy density
Energy, Environmental, and Catalysis Applications
oxidative stability
title Cold Sintering Halide-in-Oxide Composite Solid-State Electrolytes with Enhanced Ionic Conductivity
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T05%3A30%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cold%20Sintering%20Halide-in-Oxide%20Composite%20Solid-State%20Electrolytes%20with%20Enhanced%20Ionic%20Conductivity&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Nie,%20Bo&rft.date=2024-12-11&rft.volume=16&rft.issue=49&rft.spage=67635&rft.epage=67641&rft.pages=67635-67641&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.4c13031&rft_dat=%3Cproquest_cross%3E3133413715%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3133413715&rft_id=info:pmid/39591560&rfr_iscdi=true