A Roadmap for Simulating Chemical Dynamics on a Parametrically Driven Bosonic Quantum Device

Chemical reactions are commonly described by the reactive flux transferring the population from reactants to products across a double-well free energy barrier. Dynamics often involves barrier recrossing and quantum effects like tunneling, zero-point energy motion, and interference, which traditional...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of physical chemistry letters 2024-12, Vol.15 (48), p.12042-12050
Hauptverfasser: Cabral, Delmar G. A., Khazaei, Pouya, Allen, Brandon C., Videla, Pablo E., Schäfer, Max, Cortiñas, Rodrigo G., Carrillo de Albornoz, Alejandro Cros, Chávez-Carlos, Jorge, Santos, Lea F., Geva, Eitan, Batista, Victor S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 12050
container_issue 48
container_start_page 12042
container_title The journal of physical chemistry letters
container_volume 15
creator Cabral, Delmar G. A.
Khazaei, Pouya
Allen, Brandon C.
Videla, Pablo E.
Schäfer, Max
Cortiñas, Rodrigo G.
Carrillo de Albornoz, Alejandro Cros
Chávez-Carlos, Jorge
Santos, Lea F.
Geva, Eitan
Batista, Victor S.
description Chemical reactions are commonly described by the reactive flux transferring the population from reactants to products across a double-well free energy barrier. Dynamics often involves barrier recrossing and quantum effects like tunneling, zero-point energy motion, and interference, which traditional rate theories, such as transition-state theory, do not consider. In this study, we investigate the feasibility of simulating reaction dynamics using a parametrically driven bosonic superconducting Kerr-cat device. This approach provides control over parameters defining the double-well free energy profile, as well as external factors like temperature and the coupling strength between the reaction coordinate and the thermal bath of nonreactive degrees of freedom. We demonstrate the effectiveness of this protocol by showing that the dynamics of proton-transfer reactions in prototypical benchmark model systems, such as hydrogen-bonded dimers of malonaldehyde and DNA base pairs, could be accurately simulated on the currently accessible Kerr-cat devices.
doi_str_mv 10.1021/acs.jpclett.4c02864
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3132846705</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3132846705</sourcerecordid><originalsourceid>FETCH-LOGICAL-a270t-bad1325a80d2defdf5aeb065f93bfe49e55d1ebf54c37b229167b876229d62093</originalsourceid><addsrcrecordid>eNp9kEtPwzAQhC0EolD4BUjIRy5p7SROnGNpeUmVeN-Qoo2zhlRJHOykUv89KQ2IE6cdaWdmtR8hZ5xNOPP5FJSbrBpVYttOQsV8GYV75IgnofRiLsX-Hz0ix86tGIsSJuNDMgoSIZOAyyPyNqNPBvIKGqqNpc9F1ZXQFvU7nX9gVSgo6WJTQ68cNTUF-gAWKmztdlVu6MIWa6zppXGmLhR97KBuu4oucF0oPCEHGkqHp8Mck9frq5f5rbe8v7mbz5Ye-DFrvQxyHvgCJMv9HHWuBWDGIqGTINMYJihEzjHTIlRBnPl-wqM4k3HUqzzyWRKMycWut7Hms0PXplXhFJYl1Gg6lwZ9vQyjmIneGuysyhrnLOq0sUUFdpNylm6xpj3WdMCaDlj71PlwoMsqzH8zPxx7w3Rn-E6bztb9v_9WfgEXS4cv</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3132846705</pqid></control><display><type>article</type><title>A Roadmap for Simulating Chemical Dynamics on a Parametrically Driven Bosonic Quantum Device</title><source>American Chemical Society Journals</source><creator>Cabral, Delmar G. A. ; Khazaei, Pouya ; Allen, Brandon C. ; Videla, Pablo E. ; Schäfer, Max ; Cortiñas, Rodrigo G. ; Carrillo de Albornoz, Alejandro Cros ; Chávez-Carlos, Jorge ; Santos, Lea F. ; Geva, Eitan ; Batista, Victor S.</creator><creatorcontrib>Cabral, Delmar G. A. ; Khazaei, Pouya ; Allen, Brandon C. ; Videla, Pablo E. ; Schäfer, Max ; Cortiñas, Rodrigo G. ; Carrillo de Albornoz, Alejandro Cros ; Chávez-Carlos, Jorge ; Santos, Lea F. ; Geva, Eitan ; Batista, Victor S.</creatorcontrib><description>Chemical reactions are commonly described by the reactive flux transferring the population from reactants to products across a double-well free energy barrier. Dynamics often involves barrier recrossing and quantum effects like tunneling, zero-point energy motion, and interference, which traditional rate theories, such as transition-state theory, do not consider. In this study, we investigate the feasibility of simulating reaction dynamics using a parametrically driven bosonic superconducting Kerr-cat device. This approach provides control over parameters defining the double-well free energy profile, as well as external factors like temperature and the coupling strength between the reaction coordinate and the thermal bath of nonreactive degrees of freedom. We demonstrate the effectiveness of this protocol by showing that the dynamics of proton-transfer reactions in prototypical benchmark model systems, such as hydrogen-bonded dimers of malonaldehyde and DNA base pairs, could be accurately simulated on the currently accessible Kerr-cat devices.</description><identifier>ISSN: 1948-7185</identifier><identifier>EISSN: 1948-7185</identifier><identifier>DOI: 10.1021/acs.jpclett.4c02864</identifier><identifier>PMID: 39589318</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Physical Insights into Quantum Phenomena and Function</subject><ispartof>The journal of physical chemistry letters, 2024-12, Vol.15 (48), p.12042-12050</ispartof><rights>2024 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a270t-bad1325a80d2defdf5aeb065f93bfe49e55d1ebf54c37b229167b876229d62093</cites><orcidid>0009-0000-7871-014X ; 0009-0001-1195-5529 ; 0000-0002-5512-1892 ; 0000-0002-7935-4586 ; 0000-0003-0742-0342 ; 0000-0002-3262-1237</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jpclett.4c02864$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jpclett.4c02864$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39589318$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cabral, Delmar G. A.</creatorcontrib><creatorcontrib>Khazaei, Pouya</creatorcontrib><creatorcontrib>Allen, Brandon C.</creatorcontrib><creatorcontrib>Videla, Pablo E.</creatorcontrib><creatorcontrib>Schäfer, Max</creatorcontrib><creatorcontrib>Cortiñas, Rodrigo G.</creatorcontrib><creatorcontrib>Carrillo de Albornoz, Alejandro Cros</creatorcontrib><creatorcontrib>Chávez-Carlos, Jorge</creatorcontrib><creatorcontrib>Santos, Lea F.</creatorcontrib><creatorcontrib>Geva, Eitan</creatorcontrib><creatorcontrib>Batista, Victor S.</creatorcontrib><title>A Roadmap for Simulating Chemical Dynamics on a Parametrically Driven Bosonic Quantum Device</title><title>The journal of physical chemistry letters</title><addtitle>J. Phys. Chem. Lett</addtitle><description>Chemical reactions are commonly described by the reactive flux transferring the population from reactants to products across a double-well free energy barrier. Dynamics often involves barrier recrossing and quantum effects like tunneling, zero-point energy motion, and interference, which traditional rate theories, such as transition-state theory, do not consider. In this study, we investigate the feasibility of simulating reaction dynamics using a parametrically driven bosonic superconducting Kerr-cat device. This approach provides control over parameters defining the double-well free energy profile, as well as external factors like temperature and the coupling strength between the reaction coordinate and the thermal bath of nonreactive degrees of freedom. We demonstrate the effectiveness of this protocol by showing that the dynamics of proton-transfer reactions in prototypical benchmark model systems, such as hydrogen-bonded dimers of malonaldehyde and DNA base pairs, could be accurately simulated on the currently accessible Kerr-cat devices.</description><subject>Physical Insights into Quantum Phenomena and Function</subject><issn>1948-7185</issn><issn>1948-7185</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kEtPwzAQhC0EolD4BUjIRy5p7SROnGNpeUmVeN-Qoo2zhlRJHOykUv89KQ2IE6cdaWdmtR8hZ5xNOPP5FJSbrBpVYttOQsV8GYV75IgnofRiLsX-Hz0ix86tGIsSJuNDMgoSIZOAyyPyNqNPBvIKGqqNpc9F1ZXQFvU7nX9gVSgo6WJTQ68cNTUF-gAWKmztdlVu6MIWa6zppXGmLhR97KBuu4oucF0oPCEHGkqHp8Mck9frq5f5rbe8v7mbz5Ye-DFrvQxyHvgCJMv9HHWuBWDGIqGTINMYJihEzjHTIlRBnPl-wqM4k3HUqzzyWRKMycWut7Hms0PXplXhFJYl1Gg6lwZ9vQyjmIneGuysyhrnLOq0sUUFdpNylm6xpj3WdMCaDlj71PlwoMsqzH8zPxx7w3Rn-E6bztb9v_9WfgEXS4cv</recordid><startdate>20241205</startdate><enddate>20241205</enddate><creator>Cabral, Delmar G. A.</creator><creator>Khazaei, Pouya</creator><creator>Allen, Brandon C.</creator><creator>Videla, Pablo E.</creator><creator>Schäfer, Max</creator><creator>Cortiñas, Rodrigo G.</creator><creator>Carrillo de Albornoz, Alejandro Cros</creator><creator>Chávez-Carlos, Jorge</creator><creator>Santos, Lea F.</creator><creator>Geva, Eitan</creator><creator>Batista, Victor S.</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0009-0000-7871-014X</orcidid><orcidid>https://orcid.org/0009-0001-1195-5529</orcidid><orcidid>https://orcid.org/0000-0002-5512-1892</orcidid><orcidid>https://orcid.org/0000-0002-7935-4586</orcidid><orcidid>https://orcid.org/0000-0003-0742-0342</orcidid><orcidid>https://orcid.org/0000-0002-3262-1237</orcidid></search><sort><creationdate>20241205</creationdate><title>A Roadmap for Simulating Chemical Dynamics on a Parametrically Driven Bosonic Quantum Device</title><author>Cabral, Delmar G. A. ; Khazaei, Pouya ; Allen, Brandon C. ; Videla, Pablo E. ; Schäfer, Max ; Cortiñas, Rodrigo G. ; Carrillo de Albornoz, Alejandro Cros ; Chávez-Carlos, Jorge ; Santos, Lea F. ; Geva, Eitan ; Batista, Victor S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a270t-bad1325a80d2defdf5aeb065f93bfe49e55d1ebf54c37b229167b876229d62093</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Physical Insights into Quantum Phenomena and Function</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cabral, Delmar G. A.</creatorcontrib><creatorcontrib>Khazaei, Pouya</creatorcontrib><creatorcontrib>Allen, Brandon C.</creatorcontrib><creatorcontrib>Videla, Pablo E.</creatorcontrib><creatorcontrib>Schäfer, Max</creatorcontrib><creatorcontrib>Cortiñas, Rodrigo G.</creatorcontrib><creatorcontrib>Carrillo de Albornoz, Alejandro Cros</creatorcontrib><creatorcontrib>Chávez-Carlos, Jorge</creatorcontrib><creatorcontrib>Santos, Lea F.</creatorcontrib><creatorcontrib>Geva, Eitan</creatorcontrib><creatorcontrib>Batista, Victor S.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>The journal of physical chemistry letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cabral, Delmar G. A.</au><au>Khazaei, Pouya</au><au>Allen, Brandon C.</au><au>Videla, Pablo E.</au><au>Schäfer, Max</au><au>Cortiñas, Rodrigo G.</au><au>Carrillo de Albornoz, Alejandro Cros</au><au>Chávez-Carlos, Jorge</au><au>Santos, Lea F.</au><au>Geva, Eitan</au><au>Batista, Victor S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Roadmap for Simulating Chemical Dynamics on a Parametrically Driven Bosonic Quantum Device</atitle><jtitle>The journal of physical chemistry letters</jtitle><addtitle>J. Phys. Chem. Lett</addtitle><date>2024-12-05</date><risdate>2024</risdate><volume>15</volume><issue>48</issue><spage>12042</spage><epage>12050</epage><pages>12042-12050</pages><issn>1948-7185</issn><eissn>1948-7185</eissn><abstract>Chemical reactions are commonly described by the reactive flux transferring the population from reactants to products across a double-well free energy barrier. Dynamics often involves barrier recrossing and quantum effects like tunneling, zero-point energy motion, and interference, which traditional rate theories, such as transition-state theory, do not consider. In this study, we investigate the feasibility of simulating reaction dynamics using a parametrically driven bosonic superconducting Kerr-cat device. This approach provides control over parameters defining the double-well free energy profile, as well as external factors like temperature and the coupling strength between the reaction coordinate and the thermal bath of nonreactive degrees of freedom. We demonstrate the effectiveness of this protocol by showing that the dynamics of proton-transfer reactions in prototypical benchmark model systems, such as hydrogen-bonded dimers of malonaldehyde and DNA base pairs, could be accurately simulated on the currently accessible Kerr-cat devices.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>39589318</pmid><doi>10.1021/acs.jpclett.4c02864</doi><tpages>9</tpages><orcidid>https://orcid.org/0009-0000-7871-014X</orcidid><orcidid>https://orcid.org/0009-0001-1195-5529</orcidid><orcidid>https://orcid.org/0000-0002-5512-1892</orcidid><orcidid>https://orcid.org/0000-0002-7935-4586</orcidid><orcidid>https://orcid.org/0000-0003-0742-0342</orcidid><orcidid>https://orcid.org/0000-0002-3262-1237</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1948-7185
ispartof The journal of physical chemistry letters, 2024-12, Vol.15 (48), p.12042-12050
issn 1948-7185
1948-7185
language eng
recordid cdi_proquest_miscellaneous_3132846705
source American Chemical Society Journals
subjects Physical Insights into Quantum Phenomena and Function
title A Roadmap for Simulating Chemical Dynamics on a Parametrically Driven Bosonic Quantum Device
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T15%3A57%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Roadmap%20for%20Simulating%20Chemical%20Dynamics%20on%20a%20Parametrically%20Driven%20Bosonic%20Quantum%20Device&rft.jtitle=The%20journal%20of%20physical%20chemistry%20letters&rft.au=Cabral,%20Delmar%20G.%20A.&rft.date=2024-12-05&rft.volume=15&rft.issue=48&rft.spage=12042&rft.epage=12050&rft.pages=12042-12050&rft.issn=1948-7185&rft.eissn=1948-7185&rft_id=info:doi/10.1021/acs.jpclett.4c02864&rft_dat=%3Cproquest_cross%3E3132846705%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3132846705&rft_id=info:pmid/39589318&rfr_iscdi=true