A Roadmap for Simulating Chemical Dynamics on a Parametrically Driven Bosonic Quantum Device
Chemical reactions are commonly described by the reactive flux transferring the population from reactants to products across a double-well free energy barrier. Dynamics often involves barrier recrossing and quantum effects like tunneling, zero-point energy motion, and interference, which traditional...
Gespeichert in:
Veröffentlicht in: | The journal of physical chemistry letters 2024-12, Vol.15 (48), p.12042-12050 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 12050 |
---|---|
container_issue | 48 |
container_start_page | 12042 |
container_title | The journal of physical chemistry letters |
container_volume | 15 |
creator | Cabral, Delmar G. A. Khazaei, Pouya Allen, Brandon C. Videla, Pablo E. Schäfer, Max Cortiñas, Rodrigo G. Carrillo de Albornoz, Alejandro Cros Chávez-Carlos, Jorge Santos, Lea F. Geva, Eitan Batista, Victor S. |
description | Chemical reactions are commonly described by the reactive flux transferring the population from reactants to products across a double-well free energy barrier. Dynamics often involves barrier recrossing and quantum effects like tunneling, zero-point energy motion, and interference, which traditional rate theories, such as transition-state theory, do not consider. In this study, we investigate the feasibility of simulating reaction dynamics using a parametrically driven bosonic superconducting Kerr-cat device. This approach provides control over parameters defining the double-well free energy profile, as well as external factors like temperature and the coupling strength between the reaction coordinate and the thermal bath of nonreactive degrees of freedom. We demonstrate the effectiveness of this protocol by showing that the dynamics of proton-transfer reactions in prototypical benchmark model systems, such as hydrogen-bonded dimers of malonaldehyde and DNA base pairs, could be accurately simulated on the currently accessible Kerr-cat devices. |
doi_str_mv | 10.1021/acs.jpclett.4c02864 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3132846705</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3132846705</sourcerecordid><originalsourceid>FETCH-LOGICAL-a270t-bad1325a80d2defdf5aeb065f93bfe49e55d1ebf54c37b229167b876229d62093</originalsourceid><addsrcrecordid>eNp9kEtPwzAQhC0EolD4BUjIRy5p7SROnGNpeUmVeN-Qoo2zhlRJHOykUv89KQ2IE6cdaWdmtR8hZ5xNOPP5FJSbrBpVYttOQsV8GYV75IgnofRiLsX-Hz0ix86tGIsSJuNDMgoSIZOAyyPyNqNPBvIKGqqNpc9F1ZXQFvU7nX9gVSgo6WJTQ68cNTUF-gAWKmztdlVu6MIWa6zppXGmLhR97KBuu4oucF0oPCEHGkqHp8Mck9frq5f5rbe8v7mbz5Ye-DFrvQxyHvgCJMv9HHWuBWDGIqGTINMYJihEzjHTIlRBnPl-wqM4k3HUqzzyWRKMycWut7Hms0PXplXhFJYl1Gg6lwZ9vQyjmIneGuysyhrnLOq0sUUFdpNylm6xpj3WdMCaDlj71PlwoMsqzH8zPxx7w3Rn-E6bztb9v_9WfgEXS4cv</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3132846705</pqid></control><display><type>article</type><title>A Roadmap for Simulating Chemical Dynamics on a Parametrically Driven Bosonic Quantum Device</title><source>American Chemical Society Journals</source><creator>Cabral, Delmar G. A. ; Khazaei, Pouya ; Allen, Brandon C. ; Videla, Pablo E. ; Schäfer, Max ; Cortiñas, Rodrigo G. ; Carrillo de Albornoz, Alejandro Cros ; Chávez-Carlos, Jorge ; Santos, Lea F. ; Geva, Eitan ; Batista, Victor S.</creator><creatorcontrib>Cabral, Delmar G. A. ; Khazaei, Pouya ; Allen, Brandon C. ; Videla, Pablo E. ; Schäfer, Max ; Cortiñas, Rodrigo G. ; Carrillo de Albornoz, Alejandro Cros ; Chávez-Carlos, Jorge ; Santos, Lea F. ; Geva, Eitan ; Batista, Victor S.</creatorcontrib><description>Chemical reactions are commonly described by the reactive flux transferring the population from reactants to products across a double-well free energy barrier. Dynamics often involves barrier recrossing and quantum effects like tunneling, zero-point energy motion, and interference, which traditional rate theories, such as transition-state theory, do not consider. In this study, we investigate the feasibility of simulating reaction dynamics using a parametrically driven bosonic superconducting Kerr-cat device. This approach provides control over parameters defining the double-well free energy profile, as well as external factors like temperature and the coupling strength between the reaction coordinate and the thermal bath of nonreactive degrees of freedom. We demonstrate the effectiveness of this protocol by showing that the dynamics of proton-transfer reactions in prototypical benchmark model systems, such as hydrogen-bonded dimers of malonaldehyde and DNA base pairs, could be accurately simulated on the currently accessible Kerr-cat devices.</description><identifier>ISSN: 1948-7185</identifier><identifier>EISSN: 1948-7185</identifier><identifier>DOI: 10.1021/acs.jpclett.4c02864</identifier><identifier>PMID: 39589318</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Physical Insights into Quantum Phenomena and Function</subject><ispartof>The journal of physical chemistry letters, 2024-12, Vol.15 (48), p.12042-12050</ispartof><rights>2024 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a270t-bad1325a80d2defdf5aeb065f93bfe49e55d1ebf54c37b229167b876229d62093</cites><orcidid>0009-0000-7871-014X ; 0009-0001-1195-5529 ; 0000-0002-5512-1892 ; 0000-0002-7935-4586 ; 0000-0003-0742-0342 ; 0000-0002-3262-1237</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jpclett.4c02864$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jpclett.4c02864$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39589318$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cabral, Delmar G. A.</creatorcontrib><creatorcontrib>Khazaei, Pouya</creatorcontrib><creatorcontrib>Allen, Brandon C.</creatorcontrib><creatorcontrib>Videla, Pablo E.</creatorcontrib><creatorcontrib>Schäfer, Max</creatorcontrib><creatorcontrib>Cortiñas, Rodrigo G.</creatorcontrib><creatorcontrib>Carrillo de Albornoz, Alejandro Cros</creatorcontrib><creatorcontrib>Chávez-Carlos, Jorge</creatorcontrib><creatorcontrib>Santos, Lea F.</creatorcontrib><creatorcontrib>Geva, Eitan</creatorcontrib><creatorcontrib>Batista, Victor S.</creatorcontrib><title>A Roadmap for Simulating Chemical Dynamics on a Parametrically Driven Bosonic Quantum Device</title><title>The journal of physical chemistry letters</title><addtitle>J. Phys. Chem. Lett</addtitle><description>Chemical reactions are commonly described by the reactive flux transferring the population from reactants to products across a double-well free energy barrier. Dynamics often involves barrier recrossing and quantum effects like tunneling, zero-point energy motion, and interference, which traditional rate theories, such as transition-state theory, do not consider. In this study, we investigate the feasibility of simulating reaction dynamics using a parametrically driven bosonic superconducting Kerr-cat device. This approach provides control over parameters defining the double-well free energy profile, as well as external factors like temperature and the coupling strength between the reaction coordinate and the thermal bath of nonreactive degrees of freedom. We demonstrate the effectiveness of this protocol by showing that the dynamics of proton-transfer reactions in prototypical benchmark model systems, such as hydrogen-bonded dimers of malonaldehyde and DNA base pairs, could be accurately simulated on the currently accessible Kerr-cat devices.</description><subject>Physical Insights into Quantum Phenomena and Function</subject><issn>1948-7185</issn><issn>1948-7185</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kEtPwzAQhC0EolD4BUjIRy5p7SROnGNpeUmVeN-Qoo2zhlRJHOykUv89KQ2IE6cdaWdmtR8hZ5xNOPP5FJSbrBpVYttOQsV8GYV75IgnofRiLsX-Hz0ix86tGIsSJuNDMgoSIZOAyyPyNqNPBvIKGqqNpc9F1ZXQFvU7nX9gVSgo6WJTQ68cNTUF-gAWKmztdlVu6MIWa6zppXGmLhR97KBuu4oucF0oPCEHGkqHp8Mck9frq5f5rbe8v7mbz5Ye-DFrvQxyHvgCJMv9HHWuBWDGIqGTINMYJihEzjHTIlRBnPl-wqM4k3HUqzzyWRKMycWut7Hms0PXplXhFJYl1Gg6lwZ9vQyjmIneGuysyhrnLOq0sUUFdpNylm6xpj3WdMCaDlj71PlwoMsqzH8zPxx7w3Rn-E6bztb9v_9WfgEXS4cv</recordid><startdate>20241205</startdate><enddate>20241205</enddate><creator>Cabral, Delmar G. A.</creator><creator>Khazaei, Pouya</creator><creator>Allen, Brandon C.</creator><creator>Videla, Pablo E.</creator><creator>Schäfer, Max</creator><creator>Cortiñas, Rodrigo G.</creator><creator>Carrillo de Albornoz, Alejandro Cros</creator><creator>Chávez-Carlos, Jorge</creator><creator>Santos, Lea F.</creator><creator>Geva, Eitan</creator><creator>Batista, Victor S.</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0009-0000-7871-014X</orcidid><orcidid>https://orcid.org/0009-0001-1195-5529</orcidid><orcidid>https://orcid.org/0000-0002-5512-1892</orcidid><orcidid>https://orcid.org/0000-0002-7935-4586</orcidid><orcidid>https://orcid.org/0000-0003-0742-0342</orcidid><orcidid>https://orcid.org/0000-0002-3262-1237</orcidid></search><sort><creationdate>20241205</creationdate><title>A Roadmap for Simulating Chemical Dynamics on a Parametrically Driven Bosonic Quantum Device</title><author>Cabral, Delmar G. A. ; Khazaei, Pouya ; Allen, Brandon C. ; Videla, Pablo E. ; Schäfer, Max ; Cortiñas, Rodrigo G. ; Carrillo de Albornoz, Alejandro Cros ; Chávez-Carlos, Jorge ; Santos, Lea F. ; Geva, Eitan ; Batista, Victor S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a270t-bad1325a80d2defdf5aeb065f93bfe49e55d1ebf54c37b229167b876229d62093</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Physical Insights into Quantum Phenomena and Function</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cabral, Delmar G. A.</creatorcontrib><creatorcontrib>Khazaei, Pouya</creatorcontrib><creatorcontrib>Allen, Brandon C.</creatorcontrib><creatorcontrib>Videla, Pablo E.</creatorcontrib><creatorcontrib>Schäfer, Max</creatorcontrib><creatorcontrib>Cortiñas, Rodrigo G.</creatorcontrib><creatorcontrib>Carrillo de Albornoz, Alejandro Cros</creatorcontrib><creatorcontrib>Chávez-Carlos, Jorge</creatorcontrib><creatorcontrib>Santos, Lea F.</creatorcontrib><creatorcontrib>Geva, Eitan</creatorcontrib><creatorcontrib>Batista, Victor S.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>The journal of physical chemistry letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cabral, Delmar G. A.</au><au>Khazaei, Pouya</au><au>Allen, Brandon C.</au><au>Videla, Pablo E.</au><au>Schäfer, Max</au><au>Cortiñas, Rodrigo G.</au><au>Carrillo de Albornoz, Alejandro Cros</au><au>Chávez-Carlos, Jorge</au><au>Santos, Lea F.</au><au>Geva, Eitan</au><au>Batista, Victor S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Roadmap for Simulating Chemical Dynamics on a Parametrically Driven Bosonic Quantum Device</atitle><jtitle>The journal of physical chemistry letters</jtitle><addtitle>J. Phys. Chem. Lett</addtitle><date>2024-12-05</date><risdate>2024</risdate><volume>15</volume><issue>48</issue><spage>12042</spage><epage>12050</epage><pages>12042-12050</pages><issn>1948-7185</issn><eissn>1948-7185</eissn><abstract>Chemical reactions are commonly described by the reactive flux transferring the population from reactants to products across a double-well free energy barrier. Dynamics often involves barrier recrossing and quantum effects like tunneling, zero-point energy motion, and interference, which traditional rate theories, such as transition-state theory, do not consider. In this study, we investigate the feasibility of simulating reaction dynamics using a parametrically driven bosonic superconducting Kerr-cat device. This approach provides control over parameters defining the double-well free energy profile, as well as external factors like temperature and the coupling strength between the reaction coordinate and the thermal bath of nonreactive degrees of freedom. We demonstrate the effectiveness of this protocol by showing that the dynamics of proton-transfer reactions in prototypical benchmark model systems, such as hydrogen-bonded dimers of malonaldehyde and DNA base pairs, could be accurately simulated on the currently accessible Kerr-cat devices.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>39589318</pmid><doi>10.1021/acs.jpclett.4c02864</doi><tpages>9</tpages><orcidid>https://orcid.org/0009-0000-7871-014X</orcidid><orcidid>https://orcid.org/0009-0001-1195-5529</orcidid><orcidid>https://orcid.org/0000-0002-5512-1892</orcidid><orcidid>https://orcid.org/0000-0002-7935-4586</orcidid><orcidid>https://orcid.org/0000-0003-0742-0342</orcidid><orcidid>https://orcid.org/0000-0002-3262-1237</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1948-7185 |
ispartof | The journal of physical chemistry letters, 2024-12, Vol.15 (48), p.12042-12050 |
issn | 1948-7185 1948-7185 |
language | eng |
recordid | cdi_proquest_miscellaneous_3132846705 |
source | American Chemical Society Journals |
subjects | Physical Insights into Quantum Phenomena and Function |
title | A Roadmap for Simulating Chemical Dynamics on a Parametrically Driven Bosonic Quantum Device |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T15%3A57%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Roadmap%20for%20Simulating%20Chemical%20Dynamics%20on%20a%20Parametrically%20Driven%20Bosonic%20Quantum%20Device&rft.jtitle=The%20journal%20of%20physical%20chemistry%20letters&rft.au=Cabral,%20Delmar%20G.%20A.&rft.date=2024-12-05&rft.volume=15&rft.issue=48&rft.spage=12042&rft.epage=12050&rft.pages=12042-12050&rft.issn=1948-7185&rft.eissn=1948-7185&rft_id=info:doi/10.1021/acs.jpclett.4c02864&rft_dat=%3Cproquest_cross%3E3132846705%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3132846705&rft_id=info:pmid/39589318&rfr_iscdi=true |