Revealing transport, uptake and damage of polystyrene microplastics using a gut-liver-on-a-chip

Microplastics (MPs) are pervasive pollutants present in various environments. They have the capability to infiltrate the human gastrointestinal tract through avenues like water and food, and ultimately accumulating within the liver. However, due to the absence of reliable platforms, the transportati...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Lab on a chip 2024-11
Hauptverfasser: Wang, Yushen, Han, Junlei, Tang, Wenteng, Zhang, Xiaolong, Ding, Jiemeng, Xu, Zhipeng, Song, Wei, Li, Xinyu, Wang, Li
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title Lab on a chip
container_volume
creator Wang, Yushen
Han, Junlei
Tang, Wenteng
Zhang, Xiaolong
Ding, Jiemeng
Xu, Zhipeng
Song, Wei
Li, Xinyu
Wang, Li
description Microplastics (MPs) are pervasive pollutants present in various environments. They have the capability to infiltrate the human gastrointestinal tract through avenues like water and food, and ultimately accumulating within the liver. However, due to the absence of reliable platforms, the transportation, uptake, and damage of microplastics in the gut-liver axis remain unclear. Here, we present the development of a gut-liver-on-a-chip (GLOC) featuring biomimetic intestinal peristalsis and a dynamic hepatic flow environment, exploring the translocation in the intestines and accumulation in the liver of MPs following oral ingestion. In comparison to conventional co-culture platforms, this chip has the capability to mimic essential physical microenvironments found within the intestines and liver ( , intestinal peristalsis and liver blood flow). It effectively reproduces the physiological characteristics of the intestine and liver ( , intestinal barrier and liver metabolism). Moreover, we infused polyethylene MPs with a diameter of 100 nm into the intestinal and hepatic chambers (concentrations ranging from 0 to 1 mg mL ). We observed that as intestinal peristalsis increased (0%, 1%, 3%, 5%), the transport rate of MPs decreased, while the levels of oxidative stress and damage in hepatic cells decreased correspondingly. Our GLOC elucidates the process of MP transport in the intestine and uptake in the liver following oral ingestion. It underscores the critical role of intestinal peristalsis in protecting the liver from damage, and provides a novel research platform for assessing the organ-specific effects of MPs.
doi_str_mv 10.1039/d4lc00578c
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3132846435</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3132846435</sourcerecordid><originalsourceid>FETCH-LOGICAL-c176t-5b500794842241ad2ac95f13ca4bf30edf512ad60c6dc16772edefda91c059663</originalsourceid><addsrcrecordid>eNo9kMtOwzAQRS0EoqWw4QOQlwhhsONH4iUKT6kSEoJ1NLWdEsgL26nUvyelpauZxblXMwehc0ZvGOX61oraUCrTzBygKRMpJ5Rl-nC_63SCTkL4opRJobJjNOFaZlpkaoqKN7dyUFftEkcPbeg7H6_x0Ef4dhhaiy00sHS4K3Hf1esQ1961DjeV8V1fQ4iVCXgImzzg5RBJXa2cJ11LgJjPqj9FRyXUwZ3t5gx9PD68589k_vr0kt_NiWGpikQuJKXpeJJIEsHAJmC0LBk3IBYlp86WkiVgFTXKGqbSNHHWlRY0M1RqpfgMXW57e9_9DC7EoqmCcXUNreuGUHDGk0woweWIXm3R8YUQvCuL3lcN-HXBaLERWtyLef4nNB_hi13vsGic3aP_BvkvFQJxpw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3132846435</pqid></control><display><type>article</type><title>Revealing transport, uptake and damage of polystyrene microplastics using a gut-liver-on-a-chip</title><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Wang, Yushen ; Han, Junlei ; Tang, Wenteng ; Zhang, Xiaolong ; Ding, Jiemeng ; Xu, Zhipeng ; Song, Wei ; Li, Xinyu ; Wang, Li</creator><creatorcontrib>Wang, Yushen ; Han, Junlei ; Tang, Wenteng ; Zhang, Xiaolong ; Ding, Jiemeng ; Xu, Zhipeng ; Song, Wei ; Li, Xinyu ; Wang, Li</creatorcontrib><description>Microplastics (MPs) are pervasive pollutants present in various environments. They have the capability to infiltrate the human gastrointestinal tract through avenues like water and food, and ultimately accumulating within the liver. However, due to the absence of reliable platforms, the transportation, uptake, and damage of microplastics in the gut-liver axis remain unclear. Here, we present the development of a gut-liver-on-a-chip (GLOC) featuring biomimetic intestinal peristalsis and a dynamic hepatic flow environment, exploring the translocation in the intestines and accumulation in the liver of MPs following oral ingestion. In comparison to conventional co-culture platforms, this chip has the capability to mimic essential physical microenvironments found within the intestines and liver ( , intestinal peristalsis and liver blood flow). It effectively reproduces the physiological characteristics of the intestine and liver ( , intestinal barrier and liver metabolism). Moreover, we infused polyethylene MPs with a diameter of 100 nm into the intestinal and hepatic chambers (concentrations ranging from 0 to 1 mg mL ). We observed that as intestinal peristalsis increased (0%, 1%, 3%, 5%), the transport rate of MPs decreased, while the levels of oxidative stress and damage in hepatic cells decreased correspondingly. Our GLOC elucidates the process of MP transport in the intestine and uptake in the liver following oral ingestion. It underscores the critical role of intestinal peristalsis in protecting the liver from damage, and provides a novel research platform for assessing the organ-specific effects of MPs.</description><identifier>ISSN: 1473-0197</identifier><identifier>ISSN: 1473-0189</identifier><identifier>EISSN: 1473-0189</identifier><identifier>DOI: 10.1039/d4lc00578c</identifier><identifier>PMID: 39589486</identifier><language>eng</language><publisher>England</publisher><ispartof>Lab on a chip, 2024-11</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c176t-5b500794842241ad2ac95f13ca4bf30edf512ad60c6dc16772edefda91c059663</cites><orcidid>0000-0002-5166-0397</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39589486$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Yushen</creatorcontrib><creatorcontrib>Han, Junlei</creatorcontrib><creatorcontrib>Tang, Wenteng</creatorcontrib><creatorcontrib>Zhang, Xiaolong</creatorcontrib><creatorcontrib>Ding, Jiemeng</creatorcontrib><creatorcontrib>Xu, Zhipeng</creatorcontrib><creatorcontrib>Song, Wei</creatorcontrib><creatorcontrib>Li, Xinyu</creatorcontrib><creatorcontrib>Wang, Li</creatorcontrib><title>Revealing transport, uptake and damage of polystyrene microplastics using a gut-liver-on-a-chip</title><title>Lab on a chip</title><addtitle>Lab Chip</addtitle><description>Microplastics (MPs) are pervasive pollutants present in various environments. They have the capability to infiltrate the human gastrointestinal tract through avenues like water and food, and ultimately accumulating within the liver. However, due to the absence of reliable platforms, the transportation, uptake, and damage of microplastics in the gut-liver axis remain unclear. Here, we present the development of a gut-liver-on-a-chip (GLOC) featuring biomimetic intestinal peristalsis and a dynamic hepatic flow environment, exploring the translocation in the intestines and accumulation in the liver of MPs following oral ingestion. In comparison to conventional co-culture platforms, this chip has the capability to mimic essential physical microenvironments found within the intestines and liver ( , intestinal peristalsis and liver blood flow). It effectively reproduces the physiological characteristics of the intestine and liver ( , intestinal barrier and liver metabolism). Moreover, we infused polyethylene MPs with a diameter of 100 nm into the intestinal and hepatic chambers (concentrations ranging from 0 to 1 mg mL ). We observed that as intestinal peristalsis increased (0%, 1%, 3%, 5%), the transport rate of MPs decreased, while the levels of oxidative stress and damage in hepatic cells decreased correspondingly. Our GLOC elucidates the process of MP transport in the intestine and uptake in the liver following oral ingestion. It underscores the critical role of intestinal peristalsis in protecting the liver from damage, and provides a novel research platform for assessing the organ-specific effects of MPs.</description><issn>1473-0197</issn><issn>1473-0189</issn><issn>1473-0189</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNo9kMtOwzAQRS0EoqWw4QOQlwhhsONH4iUKT6kSEoJ1NLWdEsgL26nUvyelpauZxblXMwehc0ZvGOX61oraUCrTzBygKRMpJ5Rl-nC_63SCTkL4opRJobJjNOFaZlpkaoqKN7dyUFftEkcPbeg7H6_x0Ef4dhhaiy00sHS4K3Hf1esQ1961DjeV8V1fQ4iVCXgImzzg5RBJXa2cJ11LgJjPqj9FRyXUwZ3t5gx9PD68589k_vr0kt_NiWGpikQuJKXpeJJIEsHAJmC0LBk3IBYlp86WkiVgFTXKGqbSNHHWlRY0M1RqpfgMXW57e9_9DC7EoqmCcXUNreuGUHDGk0woweWIXm3R8YUQvCuL3lcN-HXBaLERWtyLef4nNB_hi13vsGic3aP_BvkvFQJxpw</recordid><startdate>20241126</startdate><enddate>20241126</enddate><creator>Wang, Yushen</creator><creator>Han, Junlei</creator><creator>Tang, Wenteng</creator><creator>Zhang, Xiaolong</creator><creator>Ding, Jiemeng</creator><creator>Xu, Zhipeng</creator><creator>Song, Wei</creator><creator>Li, Xinyu</creator><creator>Wang, Li</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-5166-0397</orcidid></search><sort><creationdate>20241126</creationdate><title>Revealing transport, uptake and damage of polystyrene microplastics using a gut-liver-on-a-chip</title><author>Wang, Yushen ; Han, Junlei ; Tang, Wenteng ; Zhang, Xiaolong ; Ding, Jiemeng ; Xu, Zhipeng ; Song, Wei ; Li, Xinyu ; Wang, Li</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c176t-5b500794842241ad2ac95f13ca4bf30edf512ad60c6dc16772edefda91c059663</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Yushen</creatorcontrib><creatorcontrib>Han, Junlei</creatorcontrib><creatorcontrib>Tang, Wenteng</creatorcontrib><creatorcontrib>Zhang, Xiaolong</creatorcontrib><creatorcontrib>Ding, Jiemeng</creatorcontrib><creatorcontrib>Xu, Zhipeng</creatorcontrib><creatorcontrib>Song, Wei</creatorcontrib><creatorcontrib>Li, Xinyu</creatorcontrib><creatorcontrib>Wang, Li</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Lab on a chip</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Yushen</au><au>Han, Junlei</au><au>Tang, Wenteng</au><au>Zhang, Xiaolong</au><au>Ding, Jiemeng</au><au>Xu, Zhipeng</au><au>Song, Wei</au><au>Li, Xinyu</au><au>Wang, Li</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Revealing transport, uptake and damage of polystyrene microplastics using a gut-liver-on-a-chip</atitle><jtitle>Lab on a chip</jtitle><addtitle>Lab Chip</addtitle><date>2024-11-26</date><risdate>2024</risdate><issn>1473-0197</issn><issn>1473-0189</issn><eissn>1473-0189</eissn><abstract>Microplastics (MPs) are pervasive pollutants present in various environments. They have the capability to infiltrate the human gastrointestinal tract through avenues like water and food, and ultimately accumulating within the liver. However, due to the absence of reliable platforms, the transportation, uptake, and damage of microplastics in the gut-liver axis remain unclear. Here, we present the development of a gut-liver-on-a-chip (GLOC) featuring biomimetic intestinal peristalsis and a dynamic hepatic flow environment, exploring the translocation in the intestines and accumulation in the liver of MPs following oral ingestion. In comparison to conventional co-culture platforms, this chip has the capability to mimic essential physical microenvironments found within the intestines and liver ( , intestinal peristalsis and liver blood flow). It effectively reproduces the physiological characteristics of the intestine and liver ( , intestinal barrier and liver metabolism). Moreover, we infused polyethylene MPs with a diameter of 100 nm into the intestinal and hepatic chambers (concentrations ranging from 0 to 1 mg mL ). We observed that as intestinal peristalsis increased (0%, 1%, 3%, 5%), the transport rate of MPs decreased, while the levels of oxidative stress and damage in hepatic cells decreased correspondingly. Our GLOC elucidates the process of MP transport in the intestine and uptake in the liver following oral ingestion. It underscores the critical role of intestinal peristalsis in protecting the liver from damage, and provides a novel research platform for assessing the organ-specific effects of MPs.</abstract><cop>England</cop><pmid>39589486</pmid><doi>10.1039/d4lc00578c</doi><orcidid>https://orcid.org/0000-0002-5166-0397</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1473-0197
ispartof Lab on a chip, 2024-11
issn 1473-0197
1473-0189
1473-0189
language eng
recordid cdi_proquest_miscellaneous_3132846435
source Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection
title Revealing transport, uptake and damage of polystyrene microplastics using a gut-liver-on-a-chip
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T10%3A25%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Revealing%20transport,%20uptake%20and%20damage%20of%20polystyrene%20microplastics%20using%20a%20gut-liver-on-a-chip&rft.jtitle=Lab%20on%20a%20chip&rft.au=Wang,%20Yushen&rft.date=2024-11-26&rft.issn=1473-0197&rft.eissn=1473-0189&rft_id=info:doi/10.1039/d4lc00578c&rft_dat=%3Cproquest_cross%3E3132846435%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3132846435&rft_id=info:pmid/39589486&rfr_iscdi=true