ChIP-DIP maps binding of hundreds of proteins to DNA simultaneously and identifies diverse gene regulatory elements
Gene expression is controlled by dynamic localization of thousands of regulatory proteins to precise genomic regions. Understanding this cell type-specific process has been a longstanding goal yet remains challenging because DNA–protein mapping methods generally study one protein at a time. Here, to...
Gespeichert in:
Veröffentlicht in: | Nature genetics 2024-12, Vol.56 (12), p.2827-2841 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2841 |
---|---|
container_issue | 12 |
container_start_page | 2827 |
container_title | Nature genetics |
container_volume | 56 |
creator | Perez, Andrew A. Goronzy, Isabel N. Blanco, Mario R. Yeh, Benjamin T. Guo, Jimmy K. Lopes, Carolina S. Ettlin, Olivia Burr, Alex Guttman, Mitchell |
description | Gene expression is controlled by dynamic localization of thousands of regulatory proteins to precise genomic regions. Understanding this cell type-specific process has been a longstanding goal yet remains challenging because DNA–protein mapping methods generally study one protein at a time. Here, to address this, we developed chromatin immunoprecipitation done in parallel (ChIP-DIP) to generate genome-wide maps of hundreds of diverse regulatory proteins in a single experiment. ChIP-DIP produces highly accurate maps within large pools (>160 proteins) for all classes of DNA-associated proteins, including modified histones, chromatin regulators and transcription factors and across multiple conditions simultaneously. First, we used ChIP-DIP to measure temporal chromatin dynamics in primary dendritic cells following LPS stimulation. Next, we explored quantitative combinations of histone modifications that define distinct classes of regulatory elements and characterized their functional activity in human and mouse cell lines. Overall, ChIP-DIP generates context-specific protein localization maps at consortium scale within any molecular biology laboratory and experimental system.
ChIP-DIP (ChIP done in parallel) is a highly multiplex assay for protein–DNA binding, scalable to hundreds of proteins including modified histones, chromatin regulators and transcription factors, offering a refined view of the
cis
-regulatory code. |
doi_str_mv | 10.1038/s41588-024-02000-5 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3132845152</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3157644002</sourcerecordid><originalsourceid>FETCH-LOGICAL-c256t-dd7bea946720b064631c7de9175cd2d75a14dff85ac94236cb89e0a5a5ba28ff3</originalsourceid><addsrcrecordid>eNp9kU9v1DAQxS0EoqXwBTggS1y4hPp_nGO1hbJSVXpoz5YTT7auEmfxJEj77fE2BSQOHEYzkn_z5smPkPecfeZM2nNUXFtbMaFKMcYq_YKccq1MxWtuX5aZGV4pJs0JeYP4yBhXitnX5EQ22tbSsFOCm4ftbXW5vaWj3yNtYwox7ejU04clhQwBj_M-TzPEhHSe6OXNBcU4LsPsE0wLDgfqU6AxQJpjHwFpiD8hI9AdJKAZdsvg5ykfKAwwFgjfkle9HxDePfczcv_1y93mW3X9_Wq7ubiuOqHNXIVQt-AbZWrBWmaUkbyrAzS81l0Qodaeq9D3VvuuUUKarrUNMK-9br2wfS_PyKdVt9j_sQDObozYwTCsxp3kUliluRYF_fgP-jgtORV3hdK1Kf_GjpRYqS5PiBl6t89x9PngOHPHSNwaiSuRuKdInC5LH56ll3aE8GfldwYFkCuA5SntIP-9_R_ZXyZCl18</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3157644002</pqid></control><display><type>article</type><title>ChIP-DIP maps binding of hundreds of proteins to DNA simultaneously and identifies diverse gene regulatory elements</title><source>MEDLINE</source><source>SpringerLink Journals</source><source>Nature</source><creator>Perez, Andrew A. ; Goronzy, Isabel N. ; Blanco, Mario R. ; Yeh, Benjamin T. ; Guo, Jimmy K. ; Lopes, Carolina S. ; Ettlin, Olivia ; Burr, Alex ; Guttman, Mitchell</creator><creatorcontrib>Perez, Andrew A. ; Goronzy, Isabel N. ; Blanco, Mario R. ; Yeh, Benjamin T. ; Guo, Jimmy K. ; Lopes, Carolina S. ; Ettlin, Olivia ; Burr, Alex ; Guttman, Mitchell</creatorcontrib><description>Gene expression is controlled by dynamic localization of thousands of regulatory proteins to precise genomic regions. Understanding this cell type-specific process has been a longstanding goal yet remains challenging because DNA–protein mapping methods generally study one protein at a time. Here, to address this, we developed chromatin immunoprecipitation done in parallel (ChIP-DIP) to generate genome-wide maps of hundreds of diverse regulatory proteins in a single experiment. ChIP-DIP produces highly accurate maps within large pools (>160 proteins) for all classes of DNA-associated proteins, including modified histones, chromatin regulators and transcription factors and across multiple conditions simultaneously. First, we used ChIP-DIP to measure temporal chromatin dynamics in primary dendritic cells following LPS stimulation. Next, we explored quantitative combinations of histone modifications that define distinct classes of regulatory elements and characterized their functional activity in human and mouse cell lines. Overall, ChIP-DIP generates context-specific protein localization maps at consortium scale within any molecular biology laboratory and experimental system.
ChIP-DIP (ChIP done in parallel) is a highly multiplex assay for protein–DNA binding, scalable to hundreds of proteins including modified histones, chromatin regulators and transcription factors, offering a refined view of the
cis
-regulatory code.</description><identifier>ISSN: 1061-4036</identifier><identifier>ISSN: 1546-1718</identifier><identifier>EISSN: 1546-1718</identifier><identifier>DOI: 10.1038/s41588-024-02000-5</identifier><identifier>PMID: 39587360</identifier><language>eng</language><publisher>New York: Nature Publishing Group US</publisher><subject>631/1647/2163 ; 631/1647/2217/2088 ; 631/208/200 ; 631/337/176 ; 631/61/514/1948 ; Agriculture ; Animal Genetics and Genomics ; Animals ; Antibodies ; Binding Sites ; Biomedical and Life Sciences ; Biomedicine ; Cancer Research ; Cell Line ; Cell lines ; Chromatin ; Chromatin - genetics ; Chromatin - metabolism ; Chromatin Immunoprecipitation - methods ; Dendritic cells ; Dendritic Cells - metabolism ; Deoxyribonucleic acid ; DNA ; DNA - genetics ; DNA - metabolism ; DNA-Binding Proteins - genetics ; DNA-Binding Proteins - metabolism ; Gene expression ; Gene Expression Regulation ; Gene Function ; Gene mapping ; Genomes ; Histones ; Histones - genetics ; Histones - metabolism ; Human Genetics ; Humans ; Immunoprecipitation ; Localization ; Mice ; Molecular biology ; Peptide mapping ; Protein Binding ; Proteins ; Regulatory proteins ; Regulatory sequences ; Regulatory Sequences, Nucleic Acid ; RNA polymerase ; technical-report ; Transcription factors ; Transcription Factors - genetics ; Transcription Factors - metabolism</subject><ispartof>Nature genetics, 2024-12, Vol.56 (12), p.2827-2841</ispartof><rights>The Author(s), under exclusive licence to Springer Nature America, Inc. 2024 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>2024. The Author(s), under exclusive licence to Springer Nature America, Inc.</rights><rights>Copyright Nature Publishing Group Dec 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c256t-dd7bea946720b064631c7de9175cd2d75a14dff85ac94236cb89e0a5a5ba28ff3</cites><orcidid>0000-0002-9243-9752 ; 0000-0003-4748-9352 ; 0000-0003-2741-9592 ; 0000-0001-9397-6392</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41588-024-02000-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41588-024-02000-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39587360$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Perez, Andrew A.</creatorcontrib><creatorcontrib>Goronzy, Isabel N.</creatorcontrib><creatorcontrib>Blanco, Mario R.</creatorcontrib><creatorcontrib>Yeh, Benjamin T.</creatorcontrib><creatorcontrib>Guo, Jimmy K.</creatorcontrib><creatorcontrib>Lopes, Carolina S.</creatorcontrib><creatorcontrib>Ettlin, Olivia</creatorcontrib><creatorcontrib>Burr, Alex</creatorcontrib><creatorcontrib>Guttman, Mitchell</creatorcontrib><title>ChIP-DIP maps binding of hundreds of proteins to DNA simultaneously and identifies diverse gene regulatory elements</title><title>Nature genetics</title><addtitle>Nat Genet</addtitle><addtitle>Nat Genet</addtitle><description>Gene expression is controlled by dynamic localization of thousands of regulatory proteins to precise genomic regions. Understanding this cell type-specific process has been a longstanding goal yet remains challenging because DNA–protein mapping methods generally study one protein at a time. Here, to address this, we developed chromatin immunoprecipitation done in parallel (ChIP-DIP) to generate genome-wide maps of hundreds of diverse regulatory proteins in a single experiment. ChIP-DIP produces highly accurate maps within large pools (>160 proteins) for all classes of DNA-associated proteins, including modified histones, chromatin regulators and transcription factors and across multiple conditions simultaneously. First, we used ChIP-DIP to measure temporal chromatin dynamics in primary dendritic cells following LPS stimulation. Next, we explored quantitative combinations of histone modifications that define distinct classes of regulatory elements and characterized their functional activity in human and mouse cell lines. Overall, ChIP-DIP generates context-specific protein localization maps at consortium scale within any molecular biology laboratory and experimental system.
ChIP-DIP (ChIP done in parallel) is a highly multiplex assay for protein–DNA binding, scalable to hundreds of proteins including modified histones, chromatin regulators and transcription factors, offering a refined view of the
cis
-regulatory code.</description><subject>631/1647/2163</subject><subject>631/1647/2217/2088</subject><subject>631/208/200</subject><subject>631/337/176</subject><subject>631/61/514/1948</subject><subject>Agriculture</subject><subject>Animal Genetics and Genomics</subject><subject>Animals</subject><subject>Antibodies</subject><subject>Binding Sites</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Cancer Research</subject><subject>Cell Line</subject><subject>Cell lines</subject><subject>Chromatin</subject><subject>Chromatin - genetics</subject><subject>Chromatin - metabolism</subject><subject>Chromatin Immunoprecipitation - methods</subject><subject>Dendritic cells</subject><subject>Dendritic Cells - metabolism</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA - genetics</subject><subject>DNA - metabolism</subject><subject>DNA-Binding Proteins - genetics</subject><subject>DNA-Binding Proteins - metabolism</subject><subject>Gene expression</subject><subject>Gene Expression Regulation</subject><subject>Gene Function</subject><subject>Gene mapping</subject><subject>Genomes</subject><subject>Histones</subject><subject>Histones - genetics</subject><subject>Histones - metabolism</subject><subject>Human Genetics</subject><subject>Humans</subject><subject>Immunoprecipitation</subject><subject>Localization</subject><subject>Mice</subject><subject>Molecular biology</subject><subject>Peptide mapping</subject><subject>Protein Binding</subject><subject>Proteins</subject><subject>Regulatory proteins</subject><subject>Regulatory sequences</subject><subject>Regulatory Sequences, Nucleic Acid</subject><subject>RNA polymerase</subject><subject>technical-report</subject><subject>Transcription factors</subject><subject>Transcription Factors - genetics</subject><subject>Transcription Factors - metabolism</subject><issn>1061-4036</issn><issn>1546-1718</issn><issn>1546-1718</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kU9v1DAQxS0EoqXwBTggS1y4hPp_nGO1hbJSVXpoz5YTT7auEmfxJEj77fE2BSQOHEYzkn_z5smPkPecfeZM2nNUXFtbMaFKMcYq_YKccq1MxWtuX5aZGV4pJs0JeYP4yBhXitnX5EQ22tbSsFOCm4ftbXW5vaWj3yNtYwox7ejU04clhQwBj_M-TzPEhHSe6OXNBcU4LsPsE0wLDgfqU6AxQJpjHwFpiD8hI9AdJKAZdsvg5ykfKAwwFgjfkle9HxDePfczcv_1y93mW3X9_Wq7ubiuOqHNXIVQt-AbZWrBWmaUkbyrAzS81l0Qodaeq9D3VvuuUUKarrUNMK-9br2wfS_PyKdVt9j_sQDObozYwTCsxp3kUliluRYF_fgP-jgtORV3hdK1Kf_GjpRYqS5PiBl6t89x9PngOHPHSNwaiSuRuKdInC5LH56ll3aE8GfldwYFkCuA5SntIP-9_R_ZXyZCl18</recordid><startdate>20241201</startdate><enddate>20241201</enddate><creator>Perez, Andrew A.</creator><creator>Goronzy, Isabel N.</creator><creator>Blanco, Mario R.</creator><creator>Yeh, Benjamin T.</creator><creator>Guo, Jimmy K.</creator><creator>Lopes, Carolina S.</creator><creator>Ettlin, Olivia</creator><creator>Burr, Alex</creator><creator>Guttman, Mitchell</creator><general>Nature Publishing Group US</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SS</scope><scope>7T7</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-9243-9752</orcidid><orcidid>https://orcid.org/0000-0003-4748-9352</orcidid><orcidid>https://orcid.org/0000-0003-2741-9592</orcidid><orcidid>https://orcid.org/0000-0001-9397-6392</orcidid></search><sort><creationdate>20241201</creationdate><title>ChIP-DIP maps binding of hundreds of proteins to DNA simultaneously and identifies diverse gene regulatory elements</title><author>Perez, Andrew A. ; Goronzy, Isabel N. ; Blanco, Mario R. ; Yeh, Benjamin T. ; Guo, Jimmy K. ; Lopes, Carolina S. ; Ettlin, Olivia ; Burr, Alex ; Guttman, Mitchell</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c256t-dd7bea946720b064631c7de9175cd2d75a14dff85ac94236cb89e0a5a5ba28ff3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>631/1647/2163</topic><topic>631/1647/2217/2088</topic><topic>631/208/200</topic><topic>631/337/176</topic><topic>631/61/514/1948</topic><topic>Agriculture</topic><topic>Animal Genetics and Genomics</topic><topic>Animals</topic><topic>Antibodies</topic><topic>Binding Sites</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Cancer Research</topic><topic>Cell Line</topic><topic>Cell lines</topic><topic>Chromatin</topic><topic>Chromatin - genetics</topic><topic>Chromatin - metabolism</topic><topic>Chromatin Immunoprecipitation - methods</topic><topic>Dendritic cells</topic><topic>Dendritic Cells - metabolism</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA - genetics</topic><topic>DNA - metabolism</topic><topic>DNA-Binding Proteins - genetics</topic><topic>DNA-Binding Proteins - metabolism</topic><topic>Gene expression</topic><topic>Gene Expression Regulation</topic><topic>Gene Function</topic><topic>Gene mapping</topic><topic>Genomes</topic><topic>Histones</topic><topic>Histones - genetics</topic><topic>Histones - metabolism</topic><topic>Human Genetics</topic><topic>Humans</topic><topic>Immunoprecipitation</topic><topic>Localization</topic><topic>Mice</topic><topic>Molecular biology</topic><topic>Peptide mapping</topic><topic>Protein Binding</topic><topic>Proteins</topic><topic>Regulatory proteins</topic><topic>Regulatory sequences</topic><topic>Regulatory Sequences, Nucleic Acid</topic><topic>RNA polymerase</topic><topic>technical-report</topic><topic>Transcription factors</topic><topic>Transcription Factors - genetics</topic><topic>Transcription Factors - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Perez, Andrew A.</creatorcontrib><creatorcontrib>Goronzy, Isabel N.</creatorcontrib><creatorcontrib>Blanco, Mario R.</creatorcontrib><creatorcontrib>Yeh, Benjamin T.</creatorcontrib><creatorcontrib>Guo, Jimmy K.</creatorcontrib><creatorcontrib>Lopes, Carolina S.</creatorcontrib><creatorcontrib>Ettlin, Olivia</creatorcontrib><creatorcontrib>Burr, Alex</creatorcontrib><creatorcontrib>Guttman, Mitchell</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Nature genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Perez, Andrew A.</au><au>Goronzy, Isabel N.</au><au>Blanco, Mario R.</au><au>Yeh, Benjamin T.</au><au>Guo, Jimmy K.</au><au>Lopes, Carolina S.</au><au>Ettlin, Olivia</au><au>Burr, Alex</au><au>Guttman, Mitchell</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>ChIP-DIP maps binding of hundreds of proteins to DNA simultaneously and identifies diverse gene regulatory elements</atitle><jtitle>Nature genetics</jtitle><stitle>Nat Genet</stitle><addtitle>Nat Genet</addtitle><date>2024-12-01</date><risdate>2024</risdate><volume>56</volume><issue>12</issue><spage>2827</spage><epage>2841</epage><pages>2827-2841</pages><issn>1061-4036</issn><issn>1546-1718</issn><eissn>1546-1718</eissn><abstract>Gene expression is controlled by dynamic localization of thousands of regulatory proteins to precise genomic regions. Understanding this cell type-specific process has been a longstanding goal yet remains challenging because DNA–protein mapping methods generally study one protein at a time. Here, to address this, we developed chromatin immunoprecipitation done in parallel (ChIP-DIP) to generate genome-wide maps of hundreds of diverse regulatory proteins in a single experiment. ChIP-DIP produces highly accurate maps within large pools (>160 proteins) for all classes of DNA-associated proteins, including modified histones, chromatin regulators and transcription factors and across multiple conditions simultaneously. First, we used ChIP-DIP to measure temporal chromatin dynamics in primary dendritic cells following LPS stimulation. Next, we explored quantitative combinations of histone modifications that define distinct classes of regulatory elements and characterized their functional activity in human and mouse cell lines. Overall, ChIP-DIP generates context-specific protein localization maps at consortium scale within any molecular biology laboratory and experimental system.
ChIP-DIP (ChIP done in parallel) is a highly multiplex assay for protein–DNA binding, scalable to hundreds of proteins including modified histones, chromatin regulators and transcription factors, offering a refined view of the
cis
-regulatory code.</abstract><cop>New York</cop><pub>Nature Publishing Group US</pub><pmid>39587360</pmid><doi>10.1038/s41588-024-02000-5</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-9243-9752</orcidid><orcidid>https://orcid.org/0000-0003-4748-9352</orcidid><orcidid>https://orcid.org/0000-0003-2741-9592</orcidid><orcidid>https://orcid.org/0000-0001-9397-6392</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1061-4036 |
ispartof | Nature genetics, 2024-12, Vol.56 (12), p.2827-2841 |
issn | 1061-4036 1546-1718 1546-1718 |
language | eng |
recordid | cdi_proquest_miscellaneous_3132845152 |
source | MEDLINE; SpringerLink Journals; Nature |
subjects | 631/1647/2163 631/1647/2217/2088 631/208/200 631/337/176 631/61/514/1948 Agriculture Animal Genetics and Genomics Animals Antibodies Binding Sites Biomedical and Life Sciences Biomedicine Cancer Research Cell Line Cell lines Chromatin Chromatin - genetics Chromatin - metabolism Chromatin Immunoprecipitation - methods Dendritic cells Dendritic Cells - metabolism Deoxyribonucleic acid DNA DNA - genetics DNA - metabolism DNA-Binding Proteins - genetics DNA-Binding Proteins - metabolism Gene expression Gene Expression Regulation Gene Function Gene mapping Genomes Histones Histones - genetics Histones - metabolism Human Genetics Humans Immunoprecipitation Localization Mice Molecular biology Peptide mapping Protein Binding Proteins Regulatory proteins Regulatory sequences Regulatory Sequences, Nucleic Acid RNA polymerase technical-report Transcription factors Transcription Factors - genetics Transcription Factors - metabolism |
title | ChIP-DIP maps binding of hundreds of proteins to DNA simultaneously and identifies diverse gene regulatory elements |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T07%3A36%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=ChIP-DIP%20maps%20binding%20of%20hundreds%20of%20proteins%20to%20DNA%20simultaneously%20and%20identifies%20diverse%20gene%20regulatory%20elements&rft.jtitle=Nature%20genetics&rft.au=Perez,%20Andrew%20A.&rft.date=2024-12-01&rft.volume=56&rft.issue=12&rft.spage=2827&rft.epage=2841&rft.pages=2827-2841&rft.issn=1061-4036&rft.eissn=1546-1718&rft_id=info:doi/10.1038/s41588-024-02000-5&rft_dat=%3Cproquest_cross%3E3157644002%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3157644002&rft_id=info:pmid/39587360&rfr_iscdi=true |