Origin of Performance Decline in Carbonated Anion Exchange Membrane Fuel Cells
Anion exchange membrane fuel cells (AEMFCs) have successfully eliminated anode carbonate precipitation through cation immobilization with the incorporation of alkaline polymer electrolytes (APEs). However, carbonation by CO2 in ambient air continues to induce significant AEMFC performance losses via...
Gespeichert in:
Veröffentlicht in: | Journal of the American Chemical Society 2024-12, Vol.146 (49), p.33587-33594 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 33594 |
---|---|
container_issue | 49 |
container_start_page | 33587 |
container_title | Journal of the American Chemical Society |
container_volume | 146 |
creator | Li, Qihao Krumov, Mihail R. Hu, Meixue Bundschu, Colin R. Xiao, Li Zhuang, Lin Abruña, Héctor D. |
description | Anion exchange membrane fuel cells (AEMFCs) have successfully eliminated anode carbonate precipitation through cation immobilization with the incorporation of alkaline polymer electrolytes (APEs). However, carbonation by CO2 in ambient air continues to induce significant AEMFC performance losses via mechanisms that remain unclear/elusive. In this multimodal investigation of AEMFC carbonation, we find that the increase in ionic resistance after carbonation accounts for only a small fraction of the cell voltage drop, especially at high current densities. Controlled anode and cathode carbonation tests indicated that the anode hydrogen oxidation reaction (HOR) was significantly impeded by carbonation. Hydrogen pump tests showed that the HOR kinetics were more than an order of magnitude lower after carbonation, thus accounting for the large decrease in the cell voltage. Further studies using the electrochemical quartz crystal microbalance (EQCM) revealed that there exists a large barrier to the rearrangement of the double layer at the Pt/ionomer interface in the hydrogen underpotential deposition (HUPD) region, which may explain the slower HOR kinetics after carbonation. These results provide fundamental insight into the unique properties of the catalyst/APE interface and suggest new directions for energy materials and technology developments. |
doi_str_mv | 10.1021/jacs.4c11188 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3132608259</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3132608259</sourcerecordid><originalsourceid>FETCH-LOGICAL-a211t-6218dc1848813295bb6eaa0e34d7900fba70427c8a8f506b6a1fb906cb1f6c323</originalsourceid><addsrcrecordid>eNptkDFPwzAQhS0EoqWwMSOPDKT4nMRxxqq0gFQoA8yR7dglVWIXu5Hg3-OqBRam0-m-e_fuIXQJZAyEwu1aqDDOFABwfoSGkFOS5EDZMRoSQmhScJYO0FkI69hmlMMpGqRlzikwPkTPS9-sGoudwS_aG-c7YZXGd1q1jdU4TqbCS2fFVtd4Yhtn8exTvQu70vhJd9KLSM173eKpbttwjk6MaIO-ONQRepvPXqcPyWJ5_zidLBJBAbYJo8BrBTzjHFJa5lIyLQTRaVYXJSFGiiJaLRQX3OSESSbAyJIwJcEwldJ0hK73uhvvPnodtlXXBBUdRDuuD1UaZRnhNC8jerNHlXcheG2qjW864b8qINUuwWqXYHVIMOJXB-Vedrr-hX8i-zu921q73tv46P9a349geB8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3132608259</pqid></control><display><type>article</type><title>Origin of Performance Decline in Carbonated Anion Exchange Membrane Fuel Cells</title><source>American Chemical Society Journals</source><creator>Li, Qihao ; Krumov, Mihail R. ; Hu, Meixue ; Bundschu, Colin R. ; Xiao, Li ; Zhuang, Lin ; Abruña, Héctor D.</creator><creatorcontrib>Li, Qihao ; Krumov, Mihail R. ; Hu, Meixue ; Bundschu, Colin R. ; Xiao, Li ; Zhuang, Lin ; Abruña, Héctor D.</creatorcontrib><description>Anion exchange membrane fuel cells (AEMFCs) have successfully eliminated anode carbonate precipitation through cation immobilization with the incorporation of alkaline polymer electrolytes (APEs). However, carbonation by CO2 in ambient air continues to induce significant AEMFC performance losses via mechanisms that remain unclear/elusive. In this multimodal investigation of AEMFC carbonation, we find that the increase in ionic resistance after carbonation accounts for only a small fraction of the cell voltage drop, especially at high current densities. Controlled anode and cathode carbonation tests indicated that the anode hydrogen oxidation reaction (HOR) was significantly impeded by carbonation. Hydrogen pump tests showed that the HOR kinetics were more than an order of magnitude lower after carbonation, thus accounting for the large decrease in the cell voltage. Further studies using the electrochemical quartz crystal microbalance (EQCM) revealed that there exists a large barrier to the rearrangement of the double layer at the Pt/ionomer interface in the hydrogen underpotential deposition (HUPD) region, which may explain the slower HOR kinetics after carbonation. These results provide fundamental insight into the unique properties of the catalyst/APE interface and suggest new directions for energy materials and technology developments.</description><identifier>ISSN: 0002-7863</identifier><identifier>ISSN: 1520-5126</identifier><identifier>EISSN: 1520-5126</identifier><identifier>DOI: 10.1021/jacs.4c11188</identifier><identifier>PMID: 39582168</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>Journal of the American Chemical Society, 2024-12, Vol.146 (49), p.33587-33594</ispartof><rights>2024 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a211t-6218dc1848813295bb6eaa0e34d7900fba70427c8a8f506b6a1fb906cb1f6c323</cites><orcidid>0000-0002-3948-356X ; 0000-0002-5642-6735 ; 0000-0002-6416-3138</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/jacs.4c11188$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/jacs.4c11188$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39582168$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Qihao</creatorcontrib><creatorcontrib>Krumov, Mihail R.</creatorcontrib><creatorcontrib>Hu, Meixue</creatorcontrib><creatorcontrib>Bundschu, Colin R.</creatorcontrib><creatorcontrib>Xiao, Li</creatorcontrib><creatorcontrib>Zhuang, Lin</creatorcontrib><creatorcontrib>Abruña, Héctor D.</creatorcontrib><title>Origin of Performance Decline in Carbonated Anion Exchange Membrane Fuel Cells</title><title>Journal of the American Chemical Society</title><addtitle>J. Am. Chem. Soc</addtitle><description>Anion exchange membrane fuel cells (AEMFCs) have successfully eliminated anode carbonate precipitation through cation immobilization with the incorporation of alkaline polymer electrolytes (APEs). However, carbonation by CO2 in ambient air continues to induce significant AEMFC performance losses via mechanisms that remain unclear/elusive. In this multimodal investigation of AEMFC carbonation, we find that the increase in ionic resistance after carbonation accounts for only a small fraction of the cell voltage drop, especially at high current densities. Controlled anode and cathode carbonation tests indicated that the anode hydrogen oxidation reaction (HOR) was significantly impeded by carbonation. Hydrogen pump tests showed that the HOR kinetics were more than an order of magnitude lower after carbonation, thus accounting for the large decrease in the cell voltage. Further studies using the electrochemical quartz crystal microbalance (EQCM) revealed that there exists a large barrier to the rearrangement of the double layer at the Pt/ionomer interface in the hydrogen underpotential deposition (HUPD) region, which may explain the slower HOR kinetics after carbonation. These results provide fundamental insight into the unique properties of the catalyst/APE interface and suggest new directions for energy materials and technology developments.</description><issn>0002-7863</issn><issn>1520-5126</issn><issn>1520-5126</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNptkDFPwzAQhS0EoqWwMSOPDKT4nMRxxqq0gFQoA8yR7dglVWIXu5Hg3-OqBRam0-m-e_fuIXQJZAyEwu1aqDDOFABwfoSGkFOS5EDZMRoSQmhScJYO0FkI69hmlMMpGqRlzikwPkTPS9-sGoudwS_aG-c7YZXGd1q1jdU4TqbCS2fFVtd4Yhtn8exTvQu70vhJd9KLSM173eKpbttwjk6MaIO-ONQRepvPXqcPyWJ5_zidLBJBAbYJo8BrBTzjHFJa5lIyLQTRaVYXJSFGiiJaLRQX3OSESSbAyJIwJcEwldJ0hK73uhvvPnodtlXXBBUdRDuuD1UaZRnhNC8jerNHlXcheG2qjW864b8qINUuwWqXYHVIMOJXB-Vedrr-hX8i-zu921q73tv46P9a349geB8</recordid><startdate>20241211</startdate><enddate>20241211</enddate><creator>Li, Qihao</creator><creator>Krumov, Mihail R.</creator><creator>Hu, Meixue</creator><creator>Bundschu, Colin R.</creator><creator>Xiao, Li</creator><creator>Zhuang, Lin</creator><creator>Abruña, Héctor D.</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-3948-356X</orcidid><orcidid>https://orcid.org/0000-0002-5642-6735</orcidid><orcidid>https://orcid.org/0000-0002-6416-3138</orcidid></search><sort><creationdate>20241211</creationdate><title>Origin of Performance Decline in Carbonated Anion Exchange Membrane Fuel Cells</title><author>Li, Qihao ; Krumov, Mihail R. ; Hu, Meixue ; Bundschu, Colin R. ; Xiao, Li ; Zhuang, Lin ; Abruña, Héctor D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a211t-6218dc1848813295bb6eaa0e34d7900fba70427c8a8f506b6a1fb906cb1f6c323</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Qihao</creatorcontrib><creatorcontrib>Krumov, Mihail R.</creatorcontrib><creatorcontrib>Hu, Meixue</creatorcontrib><creatorcontrib>Bundschu, Colin R.</creatorcontrib><creatorcontrib>Xiao, Li</creatorcontrib><creatorcontrib>Zhuang, Lin</creatorcontrib><creatorcontrib>Abruña, Héctor D.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of the American Chemical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Qihao</au><au>Krumov, Mihail R.</au><au>Hu, Meixue</au><au>Bundschu, Colin R.</au><au>Xiao, Li</au><au>Zhuang, Lin</au><au>Abruña, Héctor D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Origin of Performance Decline in Carbonated Anion Exchange Membrane Fuel Cells</atitle><jtitle>Journal of the American Chemical Society</jtitle><addtitle>J. Am. Chem. Soc</addtitle><date>2024-12-11</date><risdate>2024</risdate><volume>146</volume><issue>49</issue><spage>33587</spage><epage>33594</epage><pages>33587-33594</pages><issn>0002-7863</issn><issn>1520-5126</issn><eissn>1520-5126</eissn><abstract>Anion exchange membrane fuel cells (AEMFCs) have successfully eliminated anode carbonate precipitation through cation immobilization with the incorporation of alkaline polymer electrolytes (APEs). However, carbonation by CO2 in ambient air continues to induce significant AEMFC performance losses via mechanisms that remain unclear/elusive. In this multimodal investigation of AEMFC carbonation, we find that the increase in ionic resistance after carbonation accounts for only a small fraction of the cell voltage drop, especially at high current densities. Controlled anode and cathode carbonation tests indicated that the anode hydrogen oxidation reaction (HOR) was significantly impeded by carbonation. Hydrogen pump tests showed that the HOR kinetics were more than an order of magnitude lower after carbonation, thus accounting for the large decrease in the cell voltage. Further studies using the electrochemical quartz crystal microbalance (EQCM) revealed that there exists a large barrier to the rearrangement of the double layer at the Pt/ionomer interface in the hydrogen underpotential deposition (HUPD) region, which may explain the slower HOR kinetics after carbonation. These results provide fundamental insight into the unique properties of the catalyst/APE interface and suggest new directions for energy materials and technology developments.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>39582168</pmid><doi>10.1021/jacs.4c11188</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-3948-356X</orcidid><orcidid>https://orcid.org/0000-0002-5642-6735</orcidid><orcidid>https://orcid.org/0000-0002-6416-3138</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0002-7863 |
ispartof | Journal of the American Chemical Society, 2024-12, Vol.146 (49), p.33587-33594 |
issn | 0002-7863 1520-5126 1520-5126 |
language | eng |
recordid | cdi_proquest_miscellaneous_3132608259 |
source | American Chemical Society Journals |
title | Origin of Performance Decline in Carbonated Anion Exchange Membrane Fuel Cells |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T13%3A22%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Origin%20of%20Performance%20Decline%20in%20Carbonated%20Anion%20Exchange%20Membrane%20Fuel%20Cells&rft.jtitle=Journal%20of%20the%20American%20Chemical%20Society&rft.au=Li,%20Qihao&rft.date=2024-12-11&rft.volume=146&rft.issue=49&rft.spage=33587&rft.epage=33594&rft.pages=33587-33594&rft.issn=0002-7863&rft.eissn=1520-5126&rft_id=info:doi/10.1021/jacs.4c11188&rft_dat=%3Cproquest_cross%3E3132608259%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3132608259&rft_id=info:pmid/39582168&rfr_iscdi=true |