Automatic vessel segmentation and reformation of non-contrast coronary magnetic resonance angiography using transfer learning-based three-dimensional U-net with attention mechanism
Coronary magnetic resonance angiography (CMRA) presents distinct advantages, but its reliance on manual image post-processing is labor-intensive and requires specialized knowledge. This study aims to design and test an efficient artificial intelligence (AI) model capable of automating coronary arter...
Gespeichert in:
Veröffentlicht in: | Journal of cardiovascular magnetic resonance 2024-11, Vol.27 (1), p.101126 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Coronary magnetic resonance angiography (CMRA) presents distinct advantages, but its reliance on manual image post-processing is labor-intensive and requires specialized knowledge. This study aims to design and test an efficient artificial intelligence (AI) model capable of automating coronary artery segmentation and reformation from CMRA images for coronary artery disease (CAD) diagnosis.BACKGROUNDCoronary magnetic resonance angiography (CMRA) presents distinct advantages, but its reliance on manual image post-processing is labor-intensive and requires specialized knowledge. This study aims to design and test an efficient artificial intelligence (AI) model capable of automating coronary artery segmentation and reformation from CMRA images for coronary artery disease (CAD) diagnosis.By leveraging transfer learning from a pre-existing coronary computed tomography angiography model, a three-dimensional attention-aware U-Net was established, trained, and validated on a dataset of 104 subjects' CMRA. Furthermore, an independent clinical evaluation was conducted on an additional cohort of 70 patients. The AI model's performance in segmenting coronary arteries was assessed using the Dice similarity coefficient (DSC) and recall. The comparison between the AI model and manual processing by experienced radiologists on vessel reformation was based on reformatted image quality (rIQ) scoring, post-processing time, and the number of necessary user interactions. The diagnostic performance of AI-segmented CMRA for significant stenosis (≥50% diameter reduction) was evaluated using conventional coronary angiography (CAG) as a reference in sub-set data.METHODSBy leveraging transfer learning from a pre-existing coronary computed tomography angiography model, a three-dimensional attention-aware U-Net was established, trained, and validated on a dataset of 104 subjects' CMRA. Furthermore, an independent clinical evaluation was conducted on an additional cohort of 70 patients. The AI model's performance in segmenting coronary arteries was assessed using the Dice similarity coefficient (DSC) and recall. The comparison between the AI model and manual processing by experienced radiologists on vessel reformation was based on reformatted image quality (rIQ) scoring, post-processing time, and the number of necessary user interactions. The diagnostic performance of AI-segmented CMRA for significant stenosis (≥50% diameter reduction) was evaluated using conventional coronary angiograph |
---|---|
ISSN: | 1532-429X 1532-429X |
DOI: | 10.1016/j.jocmr.2024.101126 |