GoFCards: an integrated database and analytic platform for gain of function variants in humans

Gain-of-function (GOF) variants, which introduce new or amplify protein functions, are essential for understanding disease mechanisms. Despite advances in genomics and functional research, identifying and analyzing pathogenic GOF variants remains challenging owing to fragmented data and database lim...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nucleic acids research 2024-11
Hauptverfasser: Zhao, Wenjing, Tao, Youfu, Xiong, Jiayi, Liu, Lei, Wang, Zhongqing, Shao, Chuhan, Shang, Ling, Hu, Yue, Xu, Yishu, Su, Yingluo, Yu, Jiahui, Feng, Tianyi, Xie, Junyi, Xu, Huijuan, Zhang, Zijun, Peng, Jiayi, Wu, Jianbin, Zhang, Yuchang, Zhu, Shaobo, Xia, Kun, Tang, Beisha, Zhao, Guihu, Li, Jinchen, Li, Bin
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title Nucleic acids research
container_volume
creator Zhao, Wenjing
Tao, Youfu
Xiong, Jiayi
Liu, Lei
Wang, Zhongqing
Shao, Chuhan
Shang, Ling
Hu, Yue
Xu, Yishu
Su, Yingluo
Yu, Jiahui
Feng, Tianyi
Xie, Junyi
Xu, Huijuan
Zhang, Zijun
Peng, Jiayi
Wu, Jianbin
Zhang, Yuchang
Zhu, Shaobo
Xia, Kun
Tang, Beisha
Zhao, Guihu
Li, Jinchen
Li, Bin
description Gain-of-function (GOF) variants, which introduce new or amplify protein functions, are essential for understanding disease mechanisms. Despite advances in genomics and functional research, identifying and analyzing pathogenic GOF variants remains challenging owing to fragmented data and database limitations, underscoring the difficulty in accessing critical genetic information. To address this challenge, we manually reviewed the literature, pinpointing 3089 single-nucleotide variants and 72 insertions and deletions in 579 genes associated with 1299 diseases from 2069 studies, and integrated these with the 3.5 million predicted GOF variants. Our approach is complemented by a proprietary scoring system that prioritizes GOF variants on the basis of the evidence supporting their GOF effects and provides predictive scores for variants that lack existing documentation. We then developed a database named GoFCards for general geneticists and clinicians to easily obtain GOF variants in humans (http://www.genemed.tech/gofcards). This database also contains data from >150 sources and offers comprehensive variant-level and gene-level annotations, with the aim of providing users with convenient access to detailed and relevant genetic information. Furthermore, GoFCards empowers users with limited bioinformatic skills to analyze and annotate genetic data, and prioritize GOF variants. GoFCards offers an efficient platform for interpreting GOF variants and thereby advancing genetic research.
doi_str_mv 10.1093/nar/gkae1079
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3132143316</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3132143316</sourcerecordid><originalsourceid>FETCH-LOGICAL-c933-c6ea69e6687d3ff68f4f180a62d2f3c06c49bc3147f15a65e73299bad400cf083</originalsourceid><addsrcrecordid>eNo9kLFOwzAQQC0EoqWwMSOPDITaOceJ2VBFC1Ills5EF8cugcQptoPUvyeoheHupNPTGx4h15zdc6Zg7tDPt59oOMvVCZlykGkilExPyZQByxLORDEhFyF8MMYFz8Q5mYDK8kIqmJK3Vb9coK_DA0VHGxfN1mM0Na0xYoXBjO96HGz3sdF012K0ve_ouOgWG0d7S-3gdGx6R7_RN-hiGD30fejQhUtyZrEN5up4Z2SzfNosnpP16-pl8bhOtAJItDQolZGyyGuwVhZWWF4wlGmdWtBMaqEqDVzklmcoM5NDqlSFtWBMW1bAjNwetDvffw0mxLJrgjZti870QyiBQ8oFAJcjendAte9D8MaWO9906PclZ-Vv0HIMWv4FHfGbo3moOlP_w38F4QfKXHLO</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3132143316</pqid></control><display><type>article</type><title>GoFCards: an integrated database and analytic platform for gain of function variants in humans</title><source>DOAJ Directory of Open Access Journals</source><source>Access via Oxford University Press (Open Access Collection)</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Zhao, Wenjing ; Tao, Youfu ; Xiong, Jiayi ; Liu, Lei ; Wang, Zhongqing ; Shao, Chuhan ; Shang, Ling ; Hu, Yue ; Xu, Yishu ; Su, Yingluo ; Yu, Jiahui ; Feng, Tianyi ; Xie, Junyi ; Xu, Huijuan ; Zhang, Zijun ; Peng, Jiayi ; Wu, Jianbin ; Zhang, Yuchang ; Zhu, Shaobo ; Xia, Kun ; Tang, Beisha ; Zhao, Guihu ; Li, Jinchen ; Li, Bin</creator><creatorcontrib>Zhao, Wenjing ; Tao, Youfu ; Xiong, Jiayi ; Liu, Lei ; Wang, Zhongqing ; Shao, Chuhan ; Shang, Ling ; Hu, Yue ; Xu, Yishu ; Su, Yingluo ; Yu, Jiahui ; Feng, Tianyi ; Xie, Junyi ; Xu, Huijuan ; Zhang, Zijun ; Peng, Jiayi ; Wu, Jianbin ; Zhang, Yuchang ; Zhu, Shaobo ; Xia, Kun ; Tang, Beisha ; Zhao, Guihu ; Li, Jinchen ; Li, Bin</creatorcontrib><description>Gain-of-function (GOF) variants, which introduce new or amplify protein functions, are essential for understanding disease mechanisms. Despite advances in genomics and functional research, identifying and analyzing pathogenic GOF variants remains challenging owing to fragmented data and database limitations, underscoring the difficulty in accessing critical genetic information. To address this challenge, we manually reviewed the literature, pinpointing 3089 single-nucleotide variants and 72 insertions and deletions in 579 genes associated with 1299 diseases from 2069 studies, and integrated these with the 3.5 million predicted GOF variants. Our approach is complemented by a proprietary scoring system that prioritizes GOF variants on the basis of the evidence supporting their GOF effects and provides predictive scores for variants that lack existing documentation. We then developed a database named GoFCards for general geneticists and clinicians to easily obtain GOF variants in humans (http://www.genemed.tech/gofcards). This database also contains data from &gt;150 sources and offers comprehensive variant-level and gene-level annotations, with the aim of providing users with convenient access to detailed and relevant genetic information. Furthermore, GoFCards empowers users with limited bioinformatic skills to analyze and annotate genetic data, and prioritize GOF variants. GoFCards offers an efficient platform for interpreting GOF variants and thereby advancing genetic research.</description><identifier>ISSN: 0305-1048</identifier><identifier>ISSN: 1362-4962</identifier><identifier>EISSN: 1362-4962</identifier><identifier>DOI: 10.1093/nar/gkae1079</identifier><identifier>PMID: 39578693</identifier><language>eng</language><publisher>England</publisher><ispartof>Nucleic acids research, 2024-11</ispartof><rights>The Author(s) 2024. Published by Oxford University Press on behalf of Nucleic Acids Research.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c933-c6ea69e6687d3ff68f4f180a62d2f3c06c49bc3147f15a65e73299bad400cf083</cites><orcidid>0000-0003-3335-9303 ; 0000-0001-8090-6002 ; 0000-0002-5544-7788 ; 0000-0003-2120-1576 ; 0000-0002-8374-1087</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,865,27929,27930</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39578693$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhao, Wenjing</creatorcontrib><creatorcontrib>Tao, Youfu</creatorcontrib><creatorcontrib>Xiong, Jiayi</creatorcontrib><creatorcontrib>Liu, Lei</creatorcontrib><creatorcontrib>Wang, Zhongqing</creatorcontrib><creatorcontrib>Shao, Chuhan</creatorcontrib><creatorcontrib>Shang, Ling</creatorcontrib><creatorcontrib>Hu, Yue</creatorcontrib><creatorcontrib>Xu, Yishu</creatorcontrib><creatorcontrib>Su, Yingluo</creatorcontrib><creatorcontrib>Yu, Jiahui</creatorcontrib><creatorcontrib>Feng, Tianyi</creatorcontrib><creatorcontrib>Xie, Junyi</creatorcontrib><creatorcontrib>Xu, Huijuan</creatorcontrib><creatorcontrib>Zhang, Zijun</creatorcontrib><creatorcontrib>Peng, Jiayi</creatorcontrib><creatorcontrib>Wu, Jianbin</creatorcontrib><creatorcontrib>Zhang, Yuchang</creatorcontrib><creatorcontrib>Zhu, Shaobo</creatorcontrib><creatorcontrib>Xia, Kun</creatorcontrib><creatorcontrib>Tang, Beisha</creatorcontrib><creatorcontrib>Zhao, Guihu</creatorcontrib><creatorcontrib>Li, Jinchen</creatorcontrib><creatorcontrib>Li, Bin</creatorcontrib><title>GoFCards: an integrated database and analytic platform for gain of function variants in humans</title><title>Nucleic acids research</title><addtitle>Nucleic Acids Res</addtitle><description>Gain-of-function (GOF) variants, which introduce new or amplify protein functions, are essential for understanding disease mechanisms. Despite advances in genomics and functional research, identifying and analyzing pathogenic GOF variants remains challenging owing to fragmented data and database limitations, underscoring the difficulty in accessing critical genetic information. To address this challenge, we manually reviewed the literature, pinpointing 3089 single-nucleotide variants and 72 insertions and deletions in 579 genes associated with 1299 diseases from 2069 studies, and integrated these with the 3.5 million predicted GOF variants. Our approach is complemented by a proprietary scoring system that prioritizes GOF variants on the basis of the evidence supporting their GOF effects and provides predictive scores for variants that lack existing documentation. We then developed a database named GoFCards for general geneticists and clinicians to easily obtain GOF variants in humans (http://www.genemed.tech/gofcards). This database also contains data from &gt;150 sources and offers comprehensive variant-level and gene-level annotations, with the aim of providing users with convenient access to detailed and relevant genetic information. Furthermore, GoFCards empowers users with limited bioinformatic skills to analyze and annotate genetic data, and prioritize GOF variants. GoFCards offers an efficient platform for interpreting GOF variants and thereby advancing genetic research.</description><issn>0305-1048</issn><issn>1362-4962</issn><issn>1362-4962</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNo9kLFOwzAQQC0EoqWwMSOPDITaOceJ2VBFC1Ills5EF8cugcQptoPUvyeoheHupNPTGx4h15zdc6Zg7tDPt59oOMvVCZlykGkilExPyZQByxLORDEhFyF8MMYFz8Q5mYDK8kIqmJK3Vb9coK_DA0VHGxfN1mM0Na0xYoXBjO96HGz3sdF012K0ve_ouOgWG0d7S-3gdGx6R7_RN-hiGD30fejQhUtyZrEN5up4Z2SzfNosnpP16-pl8bhOtAJItDQolZGyyGuwVhZWWF4wlGmdWtBMaqEqDVzklmcoM5NDqlSFtWBMW1bAjNwetDvffw0mxLJrgjZti870QyiBQ8oFAJcjendAte9D8MaWO9906PclZ-Vv0HIMWv4FHfGbo3moOlP_w38F4QfKXHLO</recordid><startdate>20241123</startdate><enddate>20241123</enddate><creator>Zhao, Wenjing</creator><creator>Tao, Youfu</creator><creator>Xiong, Jiayi</creator><creator>Liu, Lei</creator><creator>Wang, Zhongqing</creator><creator>Shao, Chuhan</creator><creator>Shang, Ling</creator><creator>Hu, Yue</creator><creator>Xu, Yishu</creator><creator>Su, Yingluo</creator><creator>Yu, Jiahui</creator><creator>Feng, Tianyi</creator><creator>Xie, Junyi</creator><creator>Xu, Huijuan</creator><creator>Zhang, Zijun</creator><creator>Peng, Jiayi</creator><creator>Wu, Jianbin</creator><creator>Zhang, Yuchang</creator><creator>Zhu, Shaobo</creator><creator>Xia, Kun</creator><creator>Tang, Beisha</creator><creator>Zhao, Guihu</creator><creator>Li, Jinchen</creator><creator>Li, Bin</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-3335-9303</orcidid><orcidid>https://orcid.org/0000-0001-8090-6002</orcidid><orcidid>https://orcid.org/0000-0002-5544-7788</orcidid><orcidid>https://orcid.org/0000-0003-2120-1576</orcidid><orcidid>https://orcid.org/0000-0002-8374-1087</orcidid></search><sort><creationdate>20241123</creationdate><title>GoFCards: an integrated database and analytic platform for gain of function variants in humans</title><author>Zhao, Wenjing ; Tao, Youfu ; Xiong, Jiayi ; Liu, Lei ; Wang, Zhongqing ; Shao, Chuhan ; Shang, Ling ; Hu, Yue ; Xu, Yishu ; Su, Yingluo ; Yu, Jiahui ; Feng, Tianyi ; Xie, Junyi ; Xu, Huijuan ; Zhang, Zijun ; Peng, Jiayi ; Wu, Jianbin ; Zhang, Yuchang ; Zhu, Shaobo ; Xia, Kun ; Tang, Beisha ; Zhao, Guihu ; Li, Jinchen ; Li, Bin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c933-c6ea69e6687d3ff68f4f180a62d2f3c06c49bc3147f15a65e73299bad400cf083</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Wenjing</creatorcontrib><creatorcontrib>Tao, Youfu</creatorcontrib><creatorcontrib>Xiong, Jiayi</creatorcontrib><creatorcontrib>Liu, Lei</creatorcontrib><creatorcontrib>Wang, Zhongqing</creatorcontrib><creatorcontrib>Shao, Chuhan</creatorcontrib><creatorcontrib>Shang, Ling</creatorcontrib><creatorcontrib>Hu, Yue</creatorcontrib><creatorcontrib>Xu, Yishu</creatorcontrib><creatorcontrib>Su, Yingluo</creatorcontrib><creatorcontrib>Yu, Jiahui</creatorcontrib><creatorcontrib>Feng, Tianyi</creatorcontrib><creatorcontrib>Xie, Junyi</creatorcontrib><creatorcontrib>Xu, Huijuan</creatorcontrib><creatorcontrib>Zhang, Zijun</creatorcontrib><creatorcontrib>Peng, Jiayi</creatorcontrib><creatorcontrib>Wu, Jianbin</creatorcontrib><creatorcontrib>Zhang, Yuchang</creatorcontrib><creatorcontrib>Zhu, Shaobo</creatorcontrib><creatorcontrib>Xia, Kun</creatorcontrib><creatorcontrib>Tang, Beisha</creatorcontrib><creatorcontrib>Zhao, Guihu</creatorcontrib><creatorcontrib>Li, Jinchen</creatorcontrib><creatorcontrib>Li, Bin</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Nucleic acids research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhao, Wenjing</au><au>Tao, Youfu</au><au>Xiong, Jiayi</au><au>Liu, Lei</au><au>Wang, Zhongqing</au><au>Shao, Chuhan</au><au>Shang, Ling</au><au>Hu, Yue</au><au>Xu, Yishu</au><au>Su, Yingluo</au><au>Yu, Jiahui</au><au>Feng, Tianyi</au><au>Xie, Junyi</au><au>Xu, Huijuan</au><au>Zhang, Zijun</au><au>Peng, Jiayi</au><au>Wu, Jianbin</au><au>Zhang, Yuchang</au><au>Zhu, Shaobo</au><au>Xia, Kun</au><au>Tang, Beisha</au><au>Zhao, Guihu</au><au>Li, Jinchen</au><au>Li, Bin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>GoFCards: an integrated database and analytic platform for gain of function variants in humans</atitle><jtitle>Nucleic acids research</jtitle><addtitle>Nucleic Acids Res</addtitle><date>2024-11-23</date><risdate>2024</risdate><issn>0305-1048</issn><issn>1362-4962</issn><eissn>1362-4962</eissn><abstract>Gain-of-function (GOF) variants, which introduce new or amplify protein functions, are essential for understanding disease mechanisms. Despite advances in genomics and functional research, identifying and analyzing pathogenic GOF variants remains challenging owing to fragmented data and database limitations, underscoring the difficulty in accessing critical genetic information. To address this challenge, we manually reviewed the literature, pinpointing 3089 single-nucleotide variants and 72 insertions and deletions in 579 genes associated with 1299 diseases from 2069 studies, and integrated these with the 3.5 million predicted GOF variants. Our approach is complemented by a proprietary scoring system that prioritizes GOF variants on the basis of the evidence supporting their GOF effects and provides predictive scores for variants that lack existing documentation. We then developed a database named GoFCards for general geneticists and clinicians to easily obtain GOF variants in humans (http://www.genemed.tech/gofcards). This database also contains data from &gt;150 sources and offers comprehensive variant-level and gene-level annotations, with the aim of providing users with convenient access to detailed and relevant genetic information. Furthermore, GoFCards empowers users with limited bioinformatic skills to analyze and annotate genetic data, and prioritize GOF variants. GoFCards offers an efficient platform for interpreting GOF variants and thereby advancing genetic research.</abstract><cop>England</cop><pmid>39578693</pmid><doi>10.1093/nar/gkae1079</doi><orcidid>https://orcid.org/0000-0003-3335-9303</orcidid><orcidid>https://orcid.org/0000-0001-8090-6002</orcidid><orcidid>https://orcid.org/0000-0002-5544-7788</orcidid><orcidid>https://orcid.org/0000-0003-2120-1576</orcidid><orcidid>https://orcid.org/0000-0002-8374-1087</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0305-1048
ispartof Nucleic acids research, 2024-11
issn 0305-1048
1362-4962
1362-4962
language eng
recordid cdi_proquest_miscellaneous_3132143316
source DOAJ Directory of Open Access Journals; Access via Oxford University Press (Open Access Collection); PubMed Central; Free Full-Text Journals in Chemistry
title GoFCards: an integrated database and analytic platform for gain of function variants in humans
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-11T20%3A47%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=GoFCards:%20an%20integrated%20database%20and%20analytic%20platform%20for%20gain%20of%20function%20variants%20in%20humans&rft.jtitle=Nucleic%20acids%20research&rft.au=Zhao,%20Wenjing&rft.date=2024-11-23&rft.issn=0305-1048&rft.eissn=1362-4962&rft_id=info:doi/10.1093/nar/gkae1079&rft_dat=%3Cproquest_cross%3E3132143316%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3132143316&rft_id=info:pmid/39578693&rfr_iscdi=true