16-channel sleeve antenna array based on passive decoupling method at 14 T

At ultra-high fields, especially at 14 T, head coil arrays face significant challenges with coupling between elements. Although passive decoupling methods can reduce this coupling, the decoupling elements can cause destructive interference to the RF field of the head array, thus reducing the B1+ eff...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of magnetic resonance (1997) 2024-12, Vol.369, p.107796, Article 107796
Hauptverfasser: Sun, Youheng, Wang, Miutian, Du, Jianjun, Wang, Wentao, Yang, Gang, Wang, Weimin, Ren, Qiushi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 107796
container_title Journal of magnetic resonance (1997)
container_volume 369
creator Sun, Youheng
Wang, Miutian
Du, Jianjun
Wang, Wentao
Yang, Gang
Wang, Weimin
Ren, Qiushi
description At ultra-high fields, especially at 14 T, head coil arrays face significant challenges with coupling between elements. Although passive decoupling methods can reduce this coupling, the decoupling elements can cause destructive interference to the RF field of the head array, thus reducing the B1+ efficiency. The B1+ loss due to this effect can be even higher than that due to inter-element coupling. In this study, we develop a novel passive decoupling method to improve the performance of head coil arrays at 14 T. Specifically, passive dipole antennas were utilized to decouple the 16-channel sleeve antenna array, with their positioning optimized to minimize destructive interference with the array’s RF field by increasing their distance from the active antennas. We used electromagnetic simulations to optimize the position of the passive dipoles to obtain the best performance of the array. In addition, we introduced a 16-channel dipole antenna array to compare the array performance when evaluating the sleeve antenna array performance using a human body model. We also constructed the optimized sleeve antenna array and measured its S-parameters to verify the effectiveness of the decoupling strategy. Our results show that the improved passive decoupling method can well reduce the destructive interference of the decoupling elements to the RF field. The sleeve antenna array developed under this method exhibits higher B1+ efficiency and better transmission performance. [Display omitted] •Proposing a 16-channel head coil array for human brain imaging at 14 T.•Passive decoupling method can effectively reduce coupling between adjacent elements.•Relocating decoupling elements away from the phantom enhances B1 efficiency.•Optimizing the location of decoupling elements can improve array performance.
doi_str_mv 10.1016/j.jmr.2024.107796
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3132141267</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1090780724001800</els_id><sourcerecordid>3132141267</sourcerecordid><originalsourceid>FETCH-LOGICAL-c235t-c92eb5718e8d21fea246276398edf412f6d3b9fd2d22402de80a75227cb415943</originalsourceid><addsrcrecordid>eNp9kE1PwzAMhiMEYmPwA7igHLl0JG6btOKEJj41ics4R2nisk5tWpJu0v49HR0cOdmWH7-SH0KuOZtzxsXdZr5p_BwYJMMsZS5OyJSzXEQsS8XpT88imTE5IRchbBjjPJXsnEziPJUSYpiSNy4is9bOYU1DjbhDql2Pzmmqvdd7WuiAlraOdjqEalhbNO22qyv3SRvs162luqc8oatLclbqOuDVsc7Ix9PjavESLd-fXxcPy8hAnPaRyQGLVPIMMwu8RA2JACniPENbJhxKYeMiLy1YgISBxYxpmQJIUyQ8zZN4Rm7H3M63X1sMvWqqYLCutcN2G1TMY-BDkJADykfU-DYEj6XqfNVov1ecqYNCtVGDQnVQqEaFw83NMX5bNGj_Ln6dDcD9CODw5K5Cr4Kp0Bm0lUfTK9tW_8R_A0rzf2g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3132141267</pqid></control><display><type>article</type><title>16-channel sleeve antenna array based on passive decoupling method at 14 T</title><source>Elsevier ScienceDirect Journals</source><creator>Sun, Youheng ; Wang, Miutian ; Du, Jianjun ; Wang, Wentao ; Yang, Gang ; Wang, Weimin ; Ren, Qiushi</creator><creatorcontrib>Sun, Youheng ; Wang, Miutian ; Du, Jianjun ; Wang, Wentao ; Yang, Gang ; Wang, Weimin ; Ren, Qiushi</creatorcontrib><description>At ultra-high fields, especially at 14 T, head coil arrays face significant challenges with coupling between elements. Although passive decoupling methods can reduce this coupling, the decoupling elements can cause destructive interference to the RF field of the head array, thus reducing the B1+ efficiency. The B1+ loss due to this effect can be even higher than that due to inter-element coupling. In this study, we develop a novel passive decoupling method to improve the performance of head coil arrays at 14 T. Specifically, passive dipole antennas were utilized to decouple the 16-channel sleeve antenna array, with their positioning optimized to minimize destructive interference with the array’s RF field by increasing their distance from the active antennas. We used electromagnetic simulations to optimize the position of the passive dipoles to obtain the best performance of the array. In addition, we introduced a 16-channel dipole antenna array to compare the array performance when evaluating the sleeve antenna array performance using a human body model. We also constructed the optimized sleeve antenna array and measured its S-parameters to verify the effectiveness of the decoupling strategy. Our results show that the improved passive decoupling method can well reduce the destructive interference of the decoupling elements to the RF field. The sleeve antenna array developed under this method exhibits higher B1+ efficiency and better transmission performance. [Display omitted] •Proposing a 16-channel head coil array for human brain imaging at 14 T.•Passive decoupling method can effectively reduce coupling between adjacent elements.•Relocating decoupling elements away from the phantom enhances B1 efficiency.•Optimizing the location of decoupling elements can improve array performance.</description><identifier>ISSN: 1090-7807</identifier><identifier>ISSN: 1096-0856</identifier><identifier>EISSN: 1096-0856</identifier><identifier>DOI: 10.1016/j.jmr.2024.107796</identifier><identifier>PMID: 39577232</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Passive decoupling ; RF coil design ; Sleeve antenna ; UHF MRI</subject><ispartof>Journal of magnetic resonance (1997), 2024-12, Vol.369, p.107796, Article 107796</ispartof><rights>2024</rights><rights>Copyright © 2024. Published by Elsevier Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c235t-c92eb5718e8d21fea246276398edf412f6d3b9fd2d22402de80a75227cb415943</cites><orcidid>0009-0004-0238-886X ; 0000-0002-2755-1780</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jmr.2024.107796$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,45974</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39577232$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sun, Youheng</creatorcontrib><creatorcontrib>Wang, Miutian</creatorcontrib><creatorcontrib>Du, Jianjun</creatorcontrib><creatorcontrib>Wang, Wentao</creatorcontrib><creatorcontrib>Yang, Gang</creatorcontrib><creatorcontrib>Wang, Weimin</creatorcontrib><creatorcontrib>Ren, Qiushi</creatorcontrib><title>16-channel sleeve antenna array based on passive decoupling method at 14 T</title><title>Journal of magnetic resonance (1997)</title><addtitle>J Magn Reson</addtitle><description>At ultra-high fields, especially at 14 T, head coil arrays face significant challenges with coupling between elements. Although passive decoupling methods can reduce this coupling, the decoupling elements can cause destructive interference to the RF field of the head array, thus reducing the B1+ efficiency. The B1+ loss due to this effect can be even higher than that due to inter-element coupling. In this study, we develop a novel passive decoupling method to improve the performance of head coil arrays at 14 T. Specifically, passive dipole antennas were utilized to decouple the 16-channel sleeve antenna array, with their positioning optimized to minimize destructive interference with the array’s RF field by increasing their distance from the active antennas. We used electromagnetic simulations to optimize the position of the passive dipoles to obtain the best performance of the array. In addition, we introduced a 16-channel dipole antenna array to compare the array performance when evaluating the sleeve antenna array performance using a human body model. We also constructed the optimized sleeve antenna array and measured its S-parameters to verify the effectiveness of the decoupling strategy. Our results show that the improved passive decoupling method can well reduce the destructive interference of the decoupling elements to the RF field. The sleeve antenna array developed under this method exhibits higher B1+ efficiency and better transmission performance. [Display omitted] •Proposing a 16-channel head coil array for human brain imaging at 14 T.•Passive decoupling method can effectively reduce coupling between adjacent elements.•Relocating decoupling elements away from the phantom enhances B1 efficiency.•Optimizing the location of decoupling elements can improve array performance.</description><subject>Passive decoupling</subject><subject>RF coil design</subject><subject>Sleeve antenna</subject><subject>UHF MRI</subject><issn>1090-7807</issn><issn>1096-0856</issn><issn>1096-0856</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kE1PwzAMhiMEYmPwA7igHLl0JG6btOKEJj41ics4R2nisk5tWpJu0v49HR0cOdmWH7-SH0KuOZtzxsXdZr5p_BwYJMMsZS5OyJSzXEQsS8XpT88imTE5IRchbBjjPJXsnEziPJUSYpiSNy4is9bOYU1DjbhDql2Pzmmqvdd7WuiAlraOdjqEalhbNO22qyv3SRvs162luqc8oatLclbqOuDVsc7Ix9PjavESLd-fXxcPy8hAnPaRyQGLVPIMMwu8RA2JACniPENbJhxKYeMiLy1YgISBxYxpmQJIUyQ8zZN4Rm7H3M63X1sMvWqqYLCutcN2G1TMY-BDkJADykfU-DYEj6XqfNVov1ecqYNCtVGDQnVQqEaFw83NMX5bNGj_Ln6dDcD9CODw5K5Cr4Kp0Bm0lUfTK9tW_8R_A0rzf2g</recordid><startdate>202412</startdate><enddate>202412</enddate><creator>Sun, Youheng</creator><creator>Wang, Miutian</creator><creator>Du, Jianjun</creator><creator>Wang, Wentao</creator><creator>Yang, Gang</creator><creator>Wang, Weimin</creator><creator>Ren, Qiushi</creator><general>Elsevier Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0009-0004-0238-886X</orcidid><orcidid>https://orcid.org/0000-0002-2755-1780</orcidid></search><sort><creationdate>202412</creationdate><title>16-channel sleeve antenna array based on passive decoupling method at 14 T</title><author>Sun, Youheng ; Wang, Miutian ; Du, Jianjun ; Wang, Wentao ; Yang, Gang ; Wang, Weimin ; Ren, Qiushi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c235t-c92eb5718e8d21fea246276398edf412f6d3b9fd2d22402de80a75227cb415943</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Passive decoupling</topic><topic>RF coil design</topic><topic>Sleeve antenna</topic><topic>UHF MRI</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sun, Youheng</creatorcontrib><creatorcontrib>Wang, Miutian</creatorcontrib><creatorcontrib>Du, Jianjun</creatorcontrib><creatorcontrib>Wang, Wentao</creatorcontrib><creatorcontrib>Yang, Gang</creatorcontrib><creatorcontrib>Wang, Weimin</creatorcontrib><creatorcontrib>Ren, Qiushi</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of magnetic resonance (1997)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sun, Youheng</au><au>Wang, Miutian</au><au>Du, Jianjun</au><au>Wang, Wentao</au><au>Yang, Gang</au><au>Wang, Weimin</au><au>Ren, Qiushi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>16-channel sleeve antenna array based on passive decoupling method at 14 T</atitle><jtitle>Journal of magnetic resonance (1997)</jtitle><addtitle>J Magn Reson</addtitle><date>2024-12</date><risdate>2024</risdate><volume>369</volume><spage>107796</spage><pages>107796-</pages><artnum>107796</artnum><issn>1090-7807</issn><issn>1096-0856</issn><eissn>1096-0856</eissn><abstract>At ultra-high fields, especially at 14 T, head coil arrays face significant challenges with coupling between elements. Although passive decoupling methods can reduce this coupling, the decoupling elements can cause destructive interference to the RF field of the head array, thus reducing the B1+ efficiency. The B1+ loss due to this effect can be even higher than that due to inter-element coupling. In this study, we develop a novel passive decoupling method to improve the performance of head coil arrays at 14 T. Specifically, passive dipole antennas were utilized to decouple the 16-channel sleeve antenna array, with their positioning optimized to minimize destructive interference with the array’s RF field by increasing their distance from the active antennas. We used electromagnetic simulations to optimize the position of the passive dipoles to obtain the best performance of the array. In addition, we introduced a 16-channel dipole antenna array to compare the array performance when evaluating the sleeve antenna array performance using a human body model. We also constructed the optimized sleeve antenna array and measured its S-parameters to verify the effectiveness of the decoupling strategy. Our results show that the improved passive decoupling method can well reduce the destructive interference of the decoupling elements to the RF field. The sleeve antenna array developed under this method exhibits higher B1+ efficiency and better transmission performance. [Display omitted] •Proposing a 16-channel head coil array for human brain imaging at 14 T.•Passive decoupling method can effectively reduce coupling between adjacent elements.•Relocating decoupling elements away from the phantom enhances B1 efficiency.•Optimizing the location of decoupling elements can improve array performance.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>39577232</pmid><doi>10.1016/j.jmr.2024.107796</doi><orcidid>https://orcid.org/0009-0004-0238-886X</orcidid><orcidid>https://orcid.org/0000-0002-2755-1780</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1090-7807
ispartof Journal of magnetic resonance (1997), 2024-12, Vol.369, p.107796, Article 107796
issn 1090-7807
1096-0856
1096-0856
language eng
recordid cdi_proquest_miscellaneous_3132141267
source Elsevier ScienceDirect Journals
subjects Passive decoupling
RF coil design
Sleeve antenna
UHF MRI
title 16-channel sleeve antenna array based on passive decoupling method at 14 T
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T10%3A30%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=16-channel%20sleeve%20antenna%20array%20based%20on%20passive%20decoupling%20method%20at%2014%20T&rft.jtitle=Journal%20of%20magnetic%20resonance%20(1997)&rft.au=Sun,%20Youheng&rft.date=2024-12&rft.volume=369&rft.spage=107796&rft.pages=107796-&rft.artnum=107796&rft.issn=1090-7807&rft.eissn=1096-0856&rft_id=info:doi/10.1016/j.jmr.2024.107796&rft_dat=%3Cproquest_cross%3E3132141267%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3132141267&rft_id=info:pmid/39577232&rft_els_id=S1090780724001800&rfr_iscdi=true