Pairing a Global Optimization Algorithm with EXAFS to Characterize Lanthanide Structure in Solution

Ensemble-average sampling of structures from ab initio molecular dynamics (AIMD) simulations can be used to predict theoretical extended X-ray absorption fine structure (EXAFS) signals that closely match experimental spectra. However, AIMD simulations are time-consuming and resource-intensive, parti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of chemical information and modeling 2024-12, Vol.64 (23), p.8926-8936
Hauptverfasser: Summers, Thomas J., Zhang, Difan, Sobrinho, Josiane A., de Bettencourt-Dias, Ana, Rousseau, Roger, Glezakou, Vassiliki-Alexandra, Cantu, David C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8936
container_issue 23
container_start_page 8926
container_title Journal of chemical information and modeling
container_volume 64
creator Summers, Thomas J.
Zhang, Difan
Sobrinho, Josiane A.
de Bettencourt-Dias, Ana
Rousseau, Roger
Glezakou, Vassiliki-Alexandra
Cantu, David C.
description Ensemble-average sampling of structures from ab initio molecular dynamics (AIMD) simulations can be used to predict theoretical extended X-ray absorption fine structure (EXAFS) signals that closely match experimental spectra. However, AIMD simulations are time-consuming and resource-intensive, particularly for solvated lanthanide ions, which often form multiple nonrigid geometries with high coordination numbers. To accelerate the characterization of lanthanide structures in solution, we employed the Northwest Potential Energy Surface Search Engine (NWPEsSe), an adaptive-learning global optimization algorithm, to efficiently screen first-shell structures. As case studies, we examine two systems: Eu­(NO3)3 dissolved in acetonitrile with a terpyridine ligand (terpyNO2), and Nd­(NO3)3 dissolved in acetonitrile. The theoretical spectra for structures identified by NWPEsSe were compared to both experimental and AIMD-derived EXAFS spectra. The NWPEsSe algorithm successfully identified the proper solvation structure for both Eu­(NO3)3(terpyNO2) and Nd­(NO3)­(acetonitrile)3, with the calculated EXAFS signals closely matching the experimental spectra for the Eu-ligand complex and showing good similarity for the Nd salt; the better agreement with the ligand-containing structure is attributed to a less dynamic coordination environment due to the rigid ligand. The key advantage of the global optimization algorithm lies in its ability to sample the coordination environment across the potential energy surface and reduce the time required to identify structures from generally a month to within a week. Additionally, this approach is versatile and can be adapted to characterize main-group metal complexes.
doi_str_mv 10.1021/acs.jcim.4c01769
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3131854640</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3131854640</sourcerecordid><originalsourceid>FETCH-LOGICAL-a247t-c35b5e658fc28e1775c1fae36e34c9bf9c352c9cbbb14f9dcb7cf38b1bf3d7b73</originalsourceid><addsrcrecordid>eNp1kcFLwzAUxoMobk7vniTgxYOdSdO0zXGMbQqDCVPYrSRZumW0zUxSxP31Zm7zIHh57x1-3_ce7wPgFqM-RjF-4tL1N1LX_UQinKXsDHQxTVjEUrQ4P82UpR1w5dwGIUJYGl-CDmE0owyTLpCvXFvdrCCHk8oIXsHZ1uta77jXpoGDamWs9usafoYKR4vBeA69gcM1t1x6ZfVOwSlv_Jo3eqng3NtW-tYqqBs4N1W7d7kGFyWvnLo59h54H4_ehs_RdDZ5GQ6mEY-TzEeSUEFVSvNSxrnCWUYlLrkiqSKJZKJkAYglk0IInJRsKUUmS5ILLEqyzERGeuDh4Lu15qNVzhe1dlJVFW-UaV1BMME5TdIEBfT-D7oxrW3CdYFKwpvinMSBQgdKWuOcVWWxtbrm9qvAqNgHUIQAin0AxTGAILk7GreiVstfwenjAXg8AD_S09J__b4B3jCS6w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3143392832</pqid></control><display><type>article</type><title>Pairing a Global Optimization Algorithm with EXAFS to Characterize Lanthanide Structure in Solution</title><source>ACS Publications</source><source>MEDLINE</source><creator>Summers, Thomas J. ; Zhang, Difan ; Sobrinho, Josiane A. ; de Bettencourt-Dias, Ana ; Rousseau, Roger ; Glezakou, Vassiliki-Alexandra ; Cantu, David C.</creator><creatorcontrib>Summers, Thomas J. ; Zhang, Difan ; Sobrinho, Josiane A. ; de Bettencourt-Dias, Ana ; Rousseau, Roger ; Glezakou, Vassiliki-Alexandra ; Cantu, David C.</creatorcontrib><description>Ensemble-average sampling of structures from ab initio molecular dynamics (AIMD) simulations can be used to predict theoretical extended X-ray absorption fine structure (EXAFS) signals that closely match experimental spectra. However, AIMD simulations are time-consuming and resource-intensive, particularly for solvated lanthanide ions, which often form multiple nonrigid geometries with high coordination numbers. To accelerate the characterization of lanthanide structures in solution, we employed the Northwest Potential Energy Surface Search Engine (NWPEsSe), an adaptive-learning global optimization algorithm, to efficiently screen first-shell structures. As case studies, we examine two systems: Eu­(NO3)3 dissolved in acetonitrile with a terpyridine ligand (terpyNO2), and Nd­(NO3)3 dissolved in acetonitrile. The theoretical spectra for structures identified by NWPEsSe were compared to both experimental and AIMD-derived EXAFS spectra. The NWPEsSe algorithm successfully identified the proper solvation structure for both Eu­(NO3)3(terpyNO2) and Nd­(NO3)­(acetonitrile)3, with the calculated EXAFS signals closely matching the experimental spectra for the Eu-ligand complex and showing good similarity for the Nd salt; the better agreement with the ligand-containing structure is attributed to a less dynamic coordination environment due to the rigid ligand. The key advantage of the global optimization algorithm lies in its ability to sample the coordination environment across the potential energy surface and reduce the time required to identify structures from generally a month to within a week. Additionally, this approach is versatile and can be adapted to characterize main-group metal complexes.</description><identifier>ISSN: 1549-9596</identifier><identifier>ISSN: 1549-960X</identifier><identifier>EISSN: 1549-960X</identifier><identifier>DOI: 10.1021/acs.jcim.4c01769</identifier><identifier>PMID: 39575913</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Acetonitrile ; Acetonitriles - chemistry ; Adaptive algorithms ; Algorithms ; Computational Chemistry ; Coordination compounds ; Coordination numbers ; Fine structure ; Global optimization ; Lanthanoid Series Elements - chemistry ; Ligands ; Machine learning ; Molecular dynamics ; Molecular Dynamics Simulation ; Optimization algorithms ; Potential energy ; Pyridines - chemistry ; Search engines ; Shells (structural forms) ; Solutions ; Solvation ; Spectra ; X ray absorption ; X-Ray Absorption Spectroscopy</subject><ispartof>Journal of chemical information and modeling, 2024-12, Vol.64 (23), p.8926-8936</ispartof><rights>2024 American Chemical Society</rights><rights>Copyright American Chemical Society Dec 9, 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a247t-c35b5e658fc28e1775c1fae36e34c9bf9c352c9cbbb14f9dcb7cf38b1bf3d7b73</cites><orcidid>0000-0002-4243-6078 ; 0000-0003-1947-0478 ; 0000-0001-6028-7021 ; 0000-0001-9584-5062 ; 0000-0001-7530-2378 ; 0000-0001-5162-2393</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jcim.4c01769$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jcim.4c01769$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39575913$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Summers, Thomas J.</creatorcontrib><creatorcontrib>Zhang, Difan</creatorcontrib><creatorcontrib>Sobrinho, Josiane A.</creatorcontrib><creatorcontrib>de Bettencourt-Dias, Ana</creatorcontrib><creatorcontrib>Rousseau, Roger</creatorcontrib><creatorcontrib>Glezakou, Vassiliki-Alexandra</creatorcontrib><creatorcontrib>Cantu, David C.</creatorcontrib><title>Pairing a Global Optimization Algorithm with EXAFS to Characterize Lanthanide Structure in Solution</title><title>Journal of chemical information and modeling</title><addtitle>J. Chem. Inf. Model</addtitle><description>Ensemble-average sampling of structures from ab initio molecular dynamics (AIMD) simulations can be used to predict theoretical extended X-ray absorption fine structure (EXAFS) signals that closely match experimental spectra. However, AIMD simulations are time-consuming and resource-intensive, particularly for solvated lanthanide ions, which often form multiple nonrigid geometries with high coordination numbers. To accelerate the characterization of lanthanide structures in solution, we employed the Northwest Potential Energy Surface Search Engine (NWPEsSe), an adaptive-learning global optimization algorithm, to efficiently screen first-shell structures. As case studies, we examine two systems: Eu­(NO3)3 dissolved in acetonitrile with a terpyridine ligand (terpyNO2), and Nd­(NO3)3 dissolved in acetonitrile. The theoretical spectra for structures identified by NWPEsSe were compared to both experimental and AIMD-derived EXAFS spectra. The NWPEsSe algorithm successfully identified the proper solvation structure for both Eu­(NO3)3(terpyNO2) and Nd­(NO3)­(acetonitrile)3, with the calculated EXAFS signals closely matching the experimental spectra for the Eu-ligand complex and showing good similarity for the Nd salt; the better agreement with the ligand-containing structure is attributed to a less dynamic coordination environment due to the rigid ligand. The key advantage of the global optimization algorithm lies in its ability to sample the coordination environment across the potential energy surface and reduce the time required to identify structures from generally a month to within a week. Additionally, this approach is versatile and can be adapted to characterize main-group metal complexes.</description><subject>Acetonitrile</subject><subject>Acetonitriles - chemistry</subject><subject>Adaptive algorithms</subject><subject>Algorithms</subject><subject>Computational Chemistry</subject><subject>Coordination compounds</subject><subject>Coordination numbers</subject><subject>Fine structure</subject><subject>Global optimization</subject><subject>Lanthanoid Series Elements - chemistry</subject><subject>Ligands</subject><subject>Machine learning</subject><subject>Molecular dynamics</subject><subject>Molecular Dynamics Simulation</subject><subject>Optimization algorithms</subject><subject>Potential energy</subject><subject>Pyridines - chemistry</subject><subject>Search engines</subject><subject>Shells (structural forms)</subject><subject>Solutions</subject><subject>Solvation</subject><subject>Spectra</subject><subject>X ray absorption</subject><subject>X-Ray Absorption Spectroscopy</subject><issn>1549-9596</issn><issn>1549-960X</issn><issn>1549-960X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kcFLwzAUxoMobk7vniTgxYOdSdO0zXGMbQqDCVPYrSRZumW0zUxSxP31Zm7zIHh57x1-3_ce7wPgFqM-RjF-4tL1N1LX_UQinKXsDHQxTVjEUrQ4P82UpR1w5dwGIUJYGl-CDmE0owyTLpCvXFvdrCCHk8oIXsHZ1uta77jXpoGDamWs9usafoYKR4vBeA69gcM1t1x6ZfVOwSlv_Jo3eqng3NtW-tYqqBs4N1W7d7kGFyWvnLo59h54H4_ehs_RdDZ5GQ6mEY-TzEeSUEFVSvNSxrnCWUYlLrkiqSKJZKJkAYglk0IInJRsKUUmS5ILLEqyzERGeuDh4Lu15qNVzhe1dlJVFW-UaV1BMME5TdIEBfT-D7oxrW3CdYFKwpvinMSBQgdKWuOcVWWxtbrm9qvAqNgHUIQAin0AxTGAILk7GreiVstfwenjAXg8AD_S09J__b4B3jCS6w</recordid><startdate>20241209</startdate><enddate>20241209</enddate><creator>Summers, Thomas J.</creator><creator>Zhang, Difan</creator><creator>Sobrinho, Josiane A.</creator><creator>de Bettencourt-Dias, Ana</creator><creator>Rousseau, Roger</creator><creator>Glezakou, Vassiliki-Alexandra</creator><creator>Cantu, David C.</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-4243-6078</orcidid><orcidid>https://orcid.org/0000-0003-1947-0478</orcidid><orcidid>https://orcid.org/0000-0001-6028-7021</orcidid><orcidid>https://orcid.org/0000-0001-9584-5062</orcidid><orcidid>https://orcid.org/0000-0001-7530-2378</orcidid><orcidid>https://orcid.org/0000-0001-5162-2393</orcidid></search><sort><creationdate>20241209</creationdate><title>Pairing a Global Optimization Algorithm with EXAFS to Characterize Lanthanide Structure in Solution</title><author>Summers, Thomas J. ; Zhang, Difan ; Sobrinho, Josiane A. ; de Bettencourt-Dias, Ana ; Rousseau, Roger ; Glezakou, Vassiliki-Alexandra ; Cantu, David C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a247t-c35b5e658fc28e1775c1fae36e34c9bf9c352c9cbbb14f9dcb7cf38b1bf3d7b73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Acetonitrile</topic><topic>Acetonitriles - chemistry</topic><topic>Adaptive algorithms</topic><topic>Algorithms</topic><topic>Computational Chemistry</topic><topic>Coordination compounds</topic><topic>Coordination numbers</topic><topic>Fine structure</topic><topic>Global optimization</topic><topic>Lanthanoid Series Elements - chemistry</topic><topic>Ligands</topic><topic>Machine learning</topic><topic>Molecular dynamics</topic><topic>Molecular Dynamics Simulation</topic><topic>Optimization algorithms</topic><topic>Potential energy</topic><topic>Pyridines - chemistry</topic><topic>Search engines</topic><topic>Shells (structural forms)</topic><topic>Solutions</topic><topic>Solvation</topic><topic>Spectra</topic><topic>X ray absorption</topic><topic>X-Ray Absorption Spectroscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Summers, Thomas J.</creatorcontrib><creatorcontrib>Zhang, Difan</creatorcontrib><creatorcontrib>Sobrinho, Josiane A.</creatorcontrib><creatorcontrib>de Bettencourt-Dias, Ana</creatorcontrib><creatorcontrib>Rousseau, Roger</creatorcontrib><creatorcontrib>Glezakou, Vassiliki-Alexandra</creatorcontrib><creatorcontrib>Cantu, David C.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of chemical information and modeling</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Summers, Thomas J.</au><au>Zhang, Difan</au><au>Sobrinho, Josiane A.</au><au>de Bettencourt-Dias, Ana</au><au>Rousseau, Roger</au><au>Glezakou, Vassiliki-Alexandra</au><au>Cantu, David C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Pairing a Global Optimization Algorithm with EXAFS to Characterize Lanthanide Structure in Solution</atitle><jtitle>Journal of chemical information and modeling</jtitle><addtitle>J. Chem. Inf. Model</addtitle><date>2024-12-09</date><risdate>2024</risdate><volume>64</volume><issue>23</issue><spage>8926</spage><epage>8936</epage><pages>8926-8936</pages><issn>1549-9596</issn><issn>1549-960X</issn><eissn>1549-960X</eissn><abstract>Ensemble-average sampling of structures from ab initio molecular dynamics (AIMD) simulations can be used to predict theoretical extended X-ray absorption fine structure (EXAFS) signals that closely match experimental spectra. However, AIMD simulations are time-consuming and resource-intensive, particularly for solvated lanthanide ions, which often form multiple nonrigid geometries with high coordination numbers. To accelerate the characterization of lanthanide structures in solution, we employed the Northwest Potential Energy Surface Search Engine (NWPEsSe), an adaptive-learning global optimization algorithm, to efficiently screen first-shell structures. As case studies, we examine two systems: Eu­(NO3)3 dissolved in acetonitrile with a terpyridine ligand (terpyNO2), and Nd­(NO3)3 dissolved in acetonitrile. The theoretical spectra for structures identified by NWPEsSe were compared to both experimental and AIMD-derived EXAFS spectra. The NWPEsSe algorithm successfully identified the proper solvation structure for both Eu­(NO3)3(terpyNO2) and Nd­(NO3)­(acetonitrile)3, with the calculated EXAFS signals closely matching the experimental spectra for the Eu-ligand complex and showing good similarity for the Nd salt; the better agreement with the ligand-containing structure is attributed to a less dynamic coordination environment due to the rigid ligand. The key advantage of the global optimization algorithm lies in its ability to sample the coordination environment across the potential energy surface and reduce the time required to identify structures from generally a month to within a week. Additionally, this approach is versatile and can be adapted to characterize main-group metal complexes.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>39575913</pmid><doi>10.1021/acs.jcim.4c01769</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-4243-6078</orcidid><orcidid>https://orcid.org/0000-0003-1947-0478</orcidid><orcidid>https://orcid.org/0000-0001-6028-7021</orcidid><orcidid>https://orcid.org/0000-0001-9584-5062</orcidid><orcidid>https://orcid.org/0000-0001-7530-2378</orcidid><orcidid>https://orcid.org/0000-0001-5162-2393</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1549-9596
ispartof Journal of chemical information and modeling, 2024-12, Vol.64 (23), p.8926-8936
issn 1549-9596
1549-960X
1549-960X
language eng
recordid cdi_proquest_miscellaneous_3131854640
source ACS Publications; MEDLINE
subjects Acetonitrile
Acetonitriles - chemistry
Adaptive algorithms
Algorithms
Computational Chemistry
Coordination compounds
Coordination numbers
Fine structure
Global optimization
Lanthanoid Series Elements - chemistry
Ligands
Machine learning
Molecular dynamics
Molecular Dynamics Simulation
Optimization algorithms
Potential energy
Pyridines - chemistry
Search engines
Shells (structural forms)
Solutions
Solvation
Spectra
X ray absorption
X-Ray Absorption Spectroscopy
title Pairing a Global Optimization Algorithm with EXAFS to Characterize Lanthanide Structure in Solution
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T17%3A17%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Pairing%20a%20Global%20Optimization%20Algorithm%20with%20EXAFS%20to%20Characterize%20Lanthanide%20Structure%20in%20Solution&rft.jtitle=Journal%20of%20chemical%20information%20and%20modeling&rft.au=Summers,%20Thomas%20J.&rft.date=2024-12-09&rft.volume=64&rft.issue=23&rft.spage=8926&rft.epage=8936&rft.pages=8926-8936&rft.issn=1549-9596&rft.eissn=1549-960X&rft_id=info:doi/10.1021/acs.jcim.4c01769&rft_dat=%3Cproquest_cross%3E3131854640%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3143392832&rft_id=info:pmid/39575913&rfr_iscdi=true