Homodyne quadrature laser interferometry for the characterization of low-frequency residual vibrational noise in cryogenic trapped-ion systems

Cryogenic trapped-ion systems (CTISs) have emerged as indispensable platforms for the advancement of quantum computation and precision measurement techniques. However, the sensitivity of these systems to vibrational noise, especially during the compression and expansion cycles of the cold head in a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Optics express 2024-10, Vol.32 (21), p.36586
Hauptverfasser: Qin, Qingqing, Ou, Baoquan, Wu, Wei, Xie, Yi, Chen, Ting, Wu, Chunwang, Chen, Pingxing
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 21
container_start_page 36586
container_title Optics express
container_volume 32
creator Qin, Qingqing
Ou, Baoquan
Wu, Wei
Xie, Yi
Chen, Ting
Wu, Chunwang
Chen, Pingxing
description Cryogenic trapped-ion systems (CTISs) have emerged as indispensable platforms for the advancement of quantum computation and precision measurement techniques. However, the sensitivity of these systems to vibrational noise, especially during the compression and expansion cycles of the cold head in a Gifford-McMahon cycle refrigerator (GMCR), poses a significant challenge. To mitigate this, we have crafted an innovative methodology for characterizing low-frequency residual vibrational noise in closed-cycle cryogenic trapped-ion systems. Our methodology is underpinned by a compact homodyne quadrature laser interferometer (HQLI) vibrometer system that boasts nanometer-scale accuracy. This state-of-the-art system leverages elliptic curve fitting to rectify nonlinear noise artifacts and applies an inverse tangent function to demodulation phase techniques, enabling accurate vibrational displacement measurements. Unlike the conventional approach, our scheme circumvents the introduction of extraneous vibrational noise associated with piezoelectric ceramic mirrors, which are conventionally employed to track target vibrations for locking the interference signal intensity in the reference arm. This innovation not only improves the overall CTIS performance but is also significantly applied to characterize the practical realization of quantum computation and precision measurement.
doi_str_mv 10.1364/OE.538558
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3131853243</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3131853243</sourcerecordid><originalsourceid>FETCH-LOGICAL-c210t-4d48e12ba629f5f5309ff70a28af64661c4e91a81d5b2e2689f8092777f03e2c3</originalsourceid><addsrcrecordid>eNpNkM1O3DAUha2qqMDAoi9QedkuAv5NnCVCUwZppNmUdeRxrourJJ65dkDhIfrMBAYQq3uk--nT0SHkO2cXXJbqcrO80NJobb6QE85qVShmqq-f8jE5TekfY1xVdfWNHMtaV1Kr8oT8X8U-ttMAdD_aFm0eEWhnEyANQwb0gLGHjBP1EWm-B-ruLVo3v8KTzSEONHraxcfCI-xHGNxEEVJoR9vRh7DFV2bOQwwJZid1OMW_MARHM9rdDtriRZKmlKFPZ-TI2y7B-dtdkLvfyz_Xq2K9ubm9vloXTnCWC9UqA1xsbSlqr72WrPa-YlYY60tVltwpqLk1vNVbAaI0tTesFlVVeSZBOLkgPw_eHca5dcpNH5KDrrMDxDE1kktutBRKzuivA-owpoTgmx2G3uLUcNa8zN9sls1h_pn98aYdtz20H-T73vIZGxCDbw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3131853243</pqid></control><display><type>article</type><title>Homodyne quadrature laser interferometry for the characterization of low-frequency residual vibrational noise in cryogenic trapped-ion systems</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Qin, Qingqing ; Ou, Baoquan ; Wu, Wei ; Xie, Yi ; Chen, Ting ; Wu, Chunwang ; Chen, Pingxing</creator><creatorcontrib>Qin, Qingqing ; Ou, Baoquan ; Wu, Wei ; Xie, Yi ; Chen, Ting ; Wu, Chunwang ; Chen, Pingxing</creatorcontrib><description>Cryogenic trapped-ion systems (CTISs) have emerged as indispensable platforms for the advancement of quantum computation and precision measurement techniques. However, the sensitivity of these systems to vibrational noise, especially during the compression and expansion cycles of the cold head in a Gifford-McMahon cycle refrigerator (GMCR), poses a significant challenge. To mitigate this, we have crafted an innovative methodology for characterizing low-frequency residual vibrational noise in closed-cycle cryogenic trapped-ion systems. Our methodology is underpinned by a compact homodyne quadrature laser interferometer (HQLI) vibrometer system that boasts nanometer-scale accuracy. This state-of-the-art system leverages elliptic curve fitting to rectify nonlinear noise artifacts and applies an inverse tangent function to demodulation phase techniques, enabling accurate vibrational displacement measurements. Unlike the conventional approach, our scheme circumvents the introduction of extraneous vibrational noise associated with piezoelectric ceramic mirrors, which are conventionally employed to track target vibrations for locking the interference signal intensity in the reference arm. This innovation not only improves the overall CTIS performance but is also significantly applied to characterize the practical realization of quantum computation and precision measurement.</description><identifier>ISSN: 1094-4087</identifier><identifier>EISSN: 1094-4087</identifier><identifier>DOI: 10.1364/OE.538558</identifier><identifier>PMID: 39573546</identifier><language>eng</language><publisher>United States</publisher><ispartof>Optics express, 2024-10, Vol.32 (21), p.36586</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c210t-4d48e12ba629f5f5309ff70a28af64661c4e91a81d5b2e2689f8092777f03e2c3</cites><orcidid>0000-0003-1486-4822</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,860,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39573546$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Qin, Qingqing</creatorcontrib><creatorcontrib>Ou, Baoquan</creatorcontrib><creatorcontrib>Wu, Wei</creatorcontrib><creatorcontrib>Xie, Yi</creatorcontrib><creatorcontrib>Chen, Ting</creatorcontrib><creatorcontrib>Wu, Chunwang</creatorcontrib><creatorcontrib>Chen, Pingxing</creatorcontrib><title>Homodyne quadrature laser interferometry for the characterization of low-frequency residual vibrational noise in cryogenic trapped-ion systems</title><title>Optics express</title><addtitle>Opt Express</addtitle><description>Cryogenic trapped-ion systems (CTISs) have emerged as indispensable platforms for the advancement of quantum computation and precision measurement techniques. However, the sensitivity of these systems to vibrational noise, especially during the compression and expansion cycles of the cold head in a Gifford-McMahon cycle refrigerator (GMCR), poses a significant challenge. To mitigate this, we have crafted an innovative methodology for characterizing low-frequency residual vibrational noise in closed-cycle cryogenic trapped-ion systems. Our methodology is underpinned by a compact homodyne quadrature laser interferometer (HQLI) vibrometer system that boasts nanometer-scale accuracy. This state-of-the-art system leverages elliptic curve fitting to rectify nonlinear noise artifacts and applies an inverse tangent function to demodulation phase techniques, enabling accurate vibrational displacement measurements. Unlike the conventional approach, our scheme circumvents the introduction of extraneous vibrational noise associated with piezoelectric ceramic mirrors, which are conventionally employed to track target vibrations for locking the interference signal intensity in the reference arm. This innovation not only improves the overall CTIS performance but is also significantly applied to characterize the practical realization of quantum computation and precision measurement.</description><issn>1094-4087</issn><issn>1094-4087</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpNkM1O3DAUha2qqMDAoi9QedkuAv5NnCVCUwZppNmUdeRxrourJJ65dkDhIfrMBAYQq3uk--nT0SHkO2cXXJbqcrO80NJobb6QE85qVShmqq-f8jE5TekfY1xVdfWNHMtaV1Kr8oT8X8U-ttMAdD_aFm0eEWhnEyANQwb0gLGHjBP1EWm-B-ruLVo3v8KTzSEONHraxcfCI-xHGNxEEVJoR9vRh7DFV2bOQwwJZid1OMW_MARHM9rdDtriRZKmlKFPZ-TI2y7B-dtdkLvfyz_Xq2K9ubm9vloXTnCWC9UqA1xsbSlqr72WrPa-YlYY60tVltwpqLk1vNVbAaI0tTesFlVVeSZBOLkgPw_eHca5dcpNH5KDrrMDxDE1kktutBRKzuivA-owpoTgmx2G3uLUcNa8zN9sls1h_pn98aYdtz20H-T73vIZGxCDbw</recordid><startdate>20241007</startdate><enddate>20241007</enddate><creator>Qin, Qingqing</creator><creator>Ou, Baoquan</creator><creator>Wu, Wei</creator><creator>Xie, Yi</creator><creator>Chen, Ting</creator><creator>Wu, Chunwang</creator><creator>Chen, Pingxing</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-1486-4822</orcidid></search><sort><creationdate>20241007</creationdate><title>Homodyne quadrature laser interferometry for the characterization of low-frequency residual vibrational noise in cryogenic trapped-ion systems</title><author>Qin, Qingqing ; Ou, Baoquan ; Wu, Wei ; Xie, Yi ; Chen, Ting ; Wu, Chunwang ; Chen, Pingxing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c210t-4d48e12ba629f5f5309ff70a28af64661c4e91a81d5b2e2689f8092777f03e2c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Qin, Qingqing</creatorcontrib><creatorcontrib>Ou, Baoquan</creatorcontrib><creatorcontrib>Wu, Wei</creatorcontrib><creatorcontrib>Xie, Yi</creatorcontrib><creatorcontrib>Chen, Ting</creatorcontrib><creatorcontrib>Wu, Chunwang</creatorcontrib><creatorcontrib>Chen, Pingxing</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Optics express</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Qin, Qingqing</au><au>Ou, Baoquan</au><au>Wu, Wei</au><au>Xie, Yi</au><au>Chen, Ting</au><au>Wu, Chunwang</au><au>Chen, Pingxing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Homodyne quadrature laser interferometry for the characterization of low-frequency residual vibrational noise in cryogenic trapped-ion systems</atitle><jtitle>Optics express</jtitle><addtitle>Opt Express</addtitle><date>2024-10-07</date><risdate>2024</risdate><volume>32</volume><issue>21</issue><spage>36586</spage><pages>36586-</pages><issn>1094-4087</issn><eissn>1094-4087</eissn><abstract>Cryogenic trapped-ion systems (CTISs) have emerged as indispensable platforms for the advancement of quantum computation and precision measurement techniques. However, the sensitivity of these systems to vibrational noise, especially during the compression and expansion cycles of the cold head in a Gifford-McMahon cycle refrigerator (GMCR), poses a significant challenge. To mitigate this, we have crafted an innovative methodology for characterizing low-frequency residual vibrational noise in closed-cycle cryogenic trapped-ion systems. Our methodology is underpinned by a compact homodyne quadrature laser interferometer (HQLI) vibrometer system that boasts nanometer-scale accuracy. This state-of-the-art system leverages elliptic curve fitting to rectify nonlinear noise artifacts and applies an inverse tangent function to demodulation phase techniques, enabling accurate vibrational displacement measurements. Unlike the conventional approach, our scheme circumvents the introduction of extraneous vibrational noise associated with piezoelectric ceramic mirrors, which are conventionally employed to track target vibrations for locking the interference signal intensity in the reference arm. This innovation not only improves the overall CTIS performance but is also significantly applied to characterize the practical realization of quantum computation and precision measurement.</abstract><cop>United States</cop><pmid>39573546</pmid><doi>10.1364/OE.538558</doi><orcidid>https://orcid.org/0000-0003-1486-4822</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1094-4087
ispartof Optics express, 2024-10, Vol.32 (21), p.36586
issn 1094-4087
1094-4087
language eng
recordid cdi_proquest_miscellaneous_3131853243
source DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
title Homodyne quadrature laser interferometry for the characterization of low-frequency residual vibrational noise in cryogenic trapped-ion systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T13%3A23%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Homodyne%20quadrature%20laser%20interferometry%20for%20the%20characterization%20of%20low-frequency%20residual%20vibrational%20noise%20in%20cryogenic%20trapped-ion%20systems&rft.jtitle=Optics%20express&rft.au=Qin,%20Qingqing&rft.date=2024-10-07&rft.volume=32&rft.issue=21&rft.spage=36586&rft.pages=36586-&rft.issn=1094-4087&rft.eissn=1094-4087&rft_id=info:doi/10.1364/OE.538558&rft_dat=%3Cproquest_cross%3E3131853243%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3131853243&rft_id=info:pmid/39573546&rfr_iscdi=true