Accurate RNA 3D structure prediction using a language model-based deep learning approach
Accurate prediction of RNA three-dimensional (3D) structures remains an unsolved challenge. Determining RNA 3D structures is crucial for understanding their functions and informing RNA-targeting drug development and synthetic biology design. The structural flexibility of RNA, which leads to the scar...
Gespeichert in:
Veröffentlicht in: | Nature methods 2024-11 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | Nature methods |
container_volume | |
creator | Shen, Tao Hu, Zhihang Sun, Siqi Liu, Di Wong, Felix Wang, Jiuming Chen, Jiayang Wang, Yixuan Hong, Liang Xiao, Jin Zheng, Liangzhen Krishnamoorthi, Tejas King, Irwin Wang, Sheng Yin, Peng Collins, James J Li, Yu |
description | Accurate prediction of RNA three-dimensional (3D) structures remains an unsolved challenge. Determining RNA 3D structures is crucial for understanding their functions and informing RNA-targeting drug development and synthetic biology design. The structural flexibility of RNA, which leads to the scarcity of experimentally determined data, complicates computational prediction efforts. Here we present RhoFold+, an RNA language model-based deep learning method that accurately predicts 3D structures of single-chain RNAs from sequences. By integrating an RNA language model pretrained on ~23.7 million RNA sequences and leveraging techniques to address data scarcity, RhoFold+ offers a fully automated end-to-end pipeline for RNA 3D structure prediction. Retrospective evaluations on RNA-Puzzles and CASP15 natural RNA targets demonstrate the superiority of RhoFold+ over existing methods, including human expert groups. Its efficacy and generalizability are further validated through cross-family and cross-type assessments, as well as time-censored benchmarks. Additionally, RhoFold+ predicts RNA secondary structures and interhelical angles, providing empirically verifiable features that broaden its applicability to RNA structure and function studies. |
doi_str_mv | 10.1038/s41592-024-02487-0 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3131852471</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3131852471</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1430-17497eb895aab1dda75ccef717e48be93e7f1da9a2421d0a75a8bf7a57df77483</originalsourceid><addsrcrecordid>eNo9kE9PwzAMxSMEYmPwBTigHLkU4iYh6XEaf6UJJAQStyhN3FHUriVpDnx7OrZxsGzJ7z1bP0LOgV0B4_o6CpBFnrFcbEqrjB2QKUihMwVMHu5nVsCEnMT4xRjnIpfHZMILqXIFN1PyMXcuBTsgfX2eU35L4xCSG1JA2gf0tRvqbk1TrNcramlj16tkV0jbzmOTlTaipx6xpw3asP4T9X3orPs8JUeVbSKe7fqMvN_fvS0es-XLw9NivswcCM4yUKJQWOpCWluC91ZJ57BSoFDoEguOqgJvC5uLHDwb11aXlbJS-UopofmMXG5zx7PfCeNg2jo6bMZXsUvRcOCgZS4UjNJ8K3WhizFgZfpQtzb8GGBmQ9RsiZqRpvkjathoutjlp7JF_2_ZI-S_qYpxjQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3131852471</pqid></control><display><type>article</type><title>Accurate RNA 3D structure prediction using a language model-based deep learning approach</title><source>Nature</source><source>Alma/SFX Local Collection</source><creator>Shen, Tao ; Hu, Zhihang ; Sun, Siqi ; Liu, Di ; Wong, Felix ; Wang, Jiuming ; Chen, Jiayang ; Wang, Yixuan ; Hong, Liang ; Xiao, Jin ; Zheng, Liangzhen ; Krishnamoorthi, Tejas ; King, Irwin ; Wang, Sheng ; Yin, Peng ; Collins, James J ; Li, Yu</creator><creatorcontrib>Shen, Tao ; Hu, Zhihang ; Sun, Siqi ; Liu, Di ; Wong, Felix ; Wang, Jiuming ; Chen, Jiayang ; Wang, Yixuan ; Hong, Liang ; Xiao, Jin ; Zheng, Liangzhen ; Krishnamoorthi, Tejas ; King, Irwin ; Wang, Sheng ; Yin, Peng ; Collins, James J ; Li, Yu</creatorcontrib><description>Accurate prediction of RNA three-dimensional (3D) structures remains an unsolved challenge. Determining RNA 3D structures is crucial for understanding their functions and informing RNA-targeting drug development and synthetic biology design. The structural flexibility of RNA, which leads to the scarcity of experimentally determined data, complicates computational prediction efforts. Here we present RhoFold+, an RNA language model-based deep learning method that accurately predicts 3D structures of single-chain RNAs from sequences. By integrating an RNA language model pretrained on ~23.7 million RNA sequences and leveraging techniques to address data scarcity, RhoFold+ offers a fully automated end-to-end pipeline for RNA 3D structure prediction. Retrospective evaluations on RNA-Puzzles and CASP15 natural RNA targets demonstrate the superiority of RhoFold+ over existing methods, including human expert groups. Its efficacy and generalizability are further validated through cross-family and cross-type assessments, as well as time-censored benchmarks. Additionally, RhoFold+ predicts RNA secondary structures and interhelical angles, providing empirically verifiable features that broaden its applicability to RNA structure and function studies.</description><identifier>ISSN: 1548-7091</identifier><identifier>ISSN: 1548-7105</identifier><identifier>EISSN: 1548-7105</identifier><identifier>DOI: 10.1038/s41592-024-02487-0</identifier><identifier>PMID: 39572716</identifier><language>eng</language><publisher>United States</publisher><ispartof>Nature methods, 2024-11</ispartof><rights>2024. The Author(s).</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1430-17497eb895aab1dda75ccef717e48be93e7f1da9a2421d0a75a8bf7a57df77483</cites><orcidid>0000-0002-5560-8246 ; 0000-0001-5059-1492 ; 0000-0001-7240-8724 ; 0000-0002-0708-7466 ; 0009-0003-9591-156X ; 0000-0002-3664-6722 ; 0000-0002-2769-6357 ; 0000-0003-4210-1670 ; 0000-0002-6129-3092</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,782,786,27931,27932</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39572716$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Shen, Tao</creatorcontrib><creatorcontrib>Hu, Zhihang</creatorcontrib><creatorcontrib>Sun, Siqi</creatorcontrib><creatorcontrib>Liu, Di</creatorcontrib><creatorcontrib>Wong, Felix</creatorcontrib><creatorcontrib>Wang, Jiuming</creatorcontrib><creatorcontrib>Chen, Jiayang</creatorcontrib><creatorcontrib>Wang, Yixuan</creatorcontrib><creatorcontrib>Hong, Liang</creatorcontrib><creatorcontrib>Xiao, Jin</creatorcontrib><creatorcontrib>Zheng, Liangzhen</creatorcontrib><creatorcontrib>Krishnamoorthi, Tejas</creatorcontrib><creatorcontrib>King, Irwin</creatorcontrib><creatorcontrib>Wang, Sheng</creatorcontrib><creatorcontrib>Yin, Peng</creatorcontrib><creatorcontrib>Collins, James J</creatorcontrib><creatorcontrib>Li, Yu</creatorcontrib><title>Accurate RNA 3D structure prediction using a language model-based deep learning approach</title><title>Nature methods</title><addtitle>Nat Methods</addtitle><description>Accurate prediction of RNA three-dimensional (3D) structures remains an unsolved challenge. Determining RNA 3D structures is crucial for understanding their functions and informing RNA-targeting drug development and synthetic biology design. The structural flexibility of RNA, which leads to the scarcity of experimentally determined data, complicates computational prediction efforts. Here we present RhoFold+, an RNA language model-based deep learning method that accurately predicts 3D structures of single-chain RNAs from sequences. By integrating an RNA language model pretrained on ~23.7 million RNA sequences and leveraging techniques to address data scarcity, RhoFold+ offers a fully automated end-to-end pipeline for RNA 3D structure prediction. Retrospective evaluations on RNA-Puzzles and CASP15 natural RNA targets demonstrate the superiority of RhoFold+ over existing methods, including human expert groups. Its efficacy and generalizability are further validated through cross-family and cross-type assessments, as well as time-censored benchmarks. Additionally, RhoFold+ predicts RNA secondary structures and interhelical angles, providing empirically verifiable features that broaden its applicability to RNA structure and function studies.</description><issn>1548-7091</issn><issn>1548-7105</issn><issn>1548-7105</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNo9kE9PwzAMxSMEYmPwBTigHLkU4iYh6XEaf6UJJAQStyhN3FHUriVpDnx7OrZxsGzJ7z1bP0LOgV0B4_o6CpBFnrFcbEqrjB2QKUihMwVMHu5nVsCEnMT4xRjnIpfHZMILqXIFN1PyMXcuBTsgfX2eU35L4xCSG1JA2gf0tRvqbk1TrNcramlj16tkV0jbzmOTlTaipx6xpw3asP4T9X3orPs8JUeVbSKe7fqMvN_fvS0es-XLw9NivswcCM4yUKJQWOpCWluC91ZJ57BSoFDoEguOqgJvC5uLHDwb11aXlbJS-UopofmMXG5zx7PfCeNg2jo6bMZXsUvRcOCgZS4UjNJ8K3WhizFgZfpQtzb8GGBmQ9RsiZqRpvkjathoutjlp7JF_2_ZI-S_qYpxjQ</recordid><startdate>20241121</startdate><enddate>20241121</enddate><creator>Shen, Tao</creator><creator>Hu, Zhihang</creator><creator>Sun, Siqi</creator><creator>Liu, Di</creator><creator>Wong, Felix</creator><creator>Wang, Jiuming</creator><creator>Chen, Jiayang</creator><creator>Wang, Yixuan</creator><creator>Hong, Liang</creator><creator>Xiao, Jin</creator><creator>Zheng, Liangzhen</creator><creator>Krishnamoorthi, Tejas</creator><creator>King, Irwin</creator><creator>Wang, Sheng</creator><creator>Yin, Peng</creator><creator>Collins, James J</creator><creator>Li, Yu</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-5560-8246</orcidid><orcidid>https://orcid.org/0000-0001-5059-1492</orcidid><orcidid>https://orcid.org/0000-0001-7240-8724</orcidid><orcidid>https://orcid.org/0000-0002-0708-7466</orcidid><orcidid>https://orcid.org/0009-0003-9591-156X</orcidid><orcidid>https://orcid.org/0000-0002-3664-6722</orcidid><orcidid>https://orcid.org/0000-0002-2769-6357</orcidid><orcidid>https://orcid.org/0000-0003-4210-1670</orcidid><orcidid>https://orcid.org/0000-0002-6129-3092</orcidid></search><sort><creationdate>20241121</creationdate><title>Accurate RNA 3D structure prediction using a language model-based deep learning approach</title><author>Shen, Tao ; Hu, Zhihang ; Sun, Siqi ; Liu, Di ; Wong, Felix ; Wang, Jiuming ; Chen, Jiayang ; Wang, Yixuan ; Hong, Liang ; Xiao, Jin ; Zheng, Liangzhen ; Krishnamoorthi, Tejas ; King, Irwin ; Wang, Sheng ; Yin, Peng ; Collins, James J ; Li, Yu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1430-17497eb895aab1dda75ccef717e48be93e7f1da9a2421d0a75a8bf7a57df77483</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shen, Tao</creatorcontrib><creatorcontrib>Hu, Zhihang</creatorcontrib><creatorcontrib>Sun, Siqi</creatorcontrib><creatorcontrib>Liu, Di</creatorcontrib><creatorcontrib>Wong, Felix</creatorcontrib><creatorcontrib>Wang, Jiuming</creatorcontrib><creatorcontrib>Chen, Jiayang</creatorcontrib><creatorcontrib>Wang, Yixuan</creatorcontrib><creatorcontrib>Hong, Liang</creatorcontrib><creatorcontrib>Xiao, Jin</creatorcontrib><creatorcontrib>Zheng, Liangzhen</creatorcontrib><creatorcontrib>Krishnamoorthi, Tejas</creatorcontrib><creatorcontrib>King, Irwin</creatorcontrib><creatorcontrib>Wang, Sheng</creatorcontrib><creatorcontrib>Yin, Peng</creatorcontrib><creatorcontrib>Collins, James J</creatorcontrib><creatorcontrib>Li, Yu</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Nature methods</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shen, Tao</au><au>Hu, Zhihang</au><au>Sun, Siqi</au><au>Liu, Di</au><au>Wong, Felix</au><au>Wang, Jiuming</au><au>Chen, Jiayang</au><au>Wang, Yixuan</au><au>Hong, Liang</au><au>Xiao, Jin</au><au>Zheng, Liangzhen</au><au>Krishnamoorthi, Tejas</au><au>King, Irwin</au><au>Wang, Sheng</au><au>Yin, Peng</au><au>Collins, James J</au><au>Li, Yu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Accurate RNA 3D structure prediction using a language model-based deep learning approach</atitle><jtitle>Nature methods</jtitle><addtitle>Nat Methods</addtitle><date>2024-11-21</date><risdate>2024</risdate><issn>1548-7091</issn><issn>1548-7105</issn><eissn>1548-7105</eissn><abstract>Accurate prediction of RNA three-dimensional (3D) structures remains an unsolved challenge. Determining RNA 3D structures is crucial for understanding their functions and informing RNA-targeting drug development and synthetic biology design. The structural flexibility of RNA, which leads to the scarcity of experimentally determined data, complicates computational prediction efforts. Here we present RhoFold+, an RNA language model-based deep learning method that accurately predicts 3D structures of single-chain RNAs from sequences. By integrating an RNA language model pretrained on ~23.7 million RNA sequences and leveraging techniques to address data scarcity, RhoFold+ offers a fully automated end-to-end pipeline for RNA 3D structure prediction. Retrospective evaluations on RNA-Puzzles and CASP15 natural RNA targets demonstrate the superiority of RhoFold+ over existing methods, including human expert groups. Its efficacy and generalizability are further validated through cross-family and cross-type assessments, as well as time-censored benchmarks. Additionally, RhoFold+ predicts RNA secondary structures and interhelical angles, providing empirically verifiable features that broaden its applicability to RNA structure and function studies.</abstract><cop>United States</cop><pmid>39572716</pmid><doi>10.1038/s41592-024-02487-0</doi><orcidid>https://orcid.org/0000-0002-5560-8246</orcidid><orcidid>https://orcid.org/0000-0001-5059-1492</orcidid><orcidid>https://orcid.org/0000-0001-7240-8724</orcidid><orcidid>https://orcid.org/0000-0002-0708-7466</orcidid><orcidid>https://orcid.org/0009-0003-9591-156X</orcidid><orcidid>https://orcid.org/0000-0002-3664-6722</orcidid><orcidid>https://orcid.org/0000-0002-2769-6357</orcidid><orcidid>https://orcid.org/0000-0003-4210-1670</orcidid><orcidid>https://orcid.org/0000-0002-6129-3092</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1548-7091 |
ispartof | Nature methods, 2024-11 |
issn | 1548-7091 1548-7105 1548-7105 |
language | eng |
recordid | cdi_proquest_miscellaneous_3131852471 |
source | Nature; Alma/SFX Local Collection |
title | Accurate RNA 3D structure prediction using a language model-based deep learning approach |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-04T17%3A24%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Accurate%20RNA%203D%20structure%20prediction%20using%20a%20language%20model-based%20deep%20learning%20approach&rft.jtitle=Nature%20methods&rft.au=Shen,%20Tao&rft.date=2024-11-21&rft.issn=1548-7091&rft.eissn=1548-7105&rft_id=info:doi/10.1038/s41592-024-02487-0&rft_dat=%3Cproquest_cross%3E3131852471%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3131852471&rft_id=info:pmid/39572716&rfr_iscdi=true |