Accurate RNA 3D structure prediction using a language model-based deep learning approach

Accurate prediction of RNA three-dimensional (3D) structures remains an unsolved challenge. Determining RNA 3D structures is crucial for understanding their functions and informing RNA-targeting drug development and synthetic biology design. The structural flexibility of RNA, which leads to the scar...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature methods 2024-11
Hauptverfasser: Shen, Tao, Hu, Zhihang, Sun, Siqi, Liu, Di, Wong, Felix, Wang, Jiuming, Chen, Jiayang, Wang, Yixuan, Hong, Liang, Xiao, Jin, Zheng, Liangzhen, Krishnamoorthi, Tejas, King, Irwin, Wang, Sheng, Yin, Peng, Collins, James J, Li, Yu
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title Nature methods
container_volume
creator Shen, Tao
Hu, Zhihang
Sun, Siqi
Liu, Di
Wong, Felix
Wang, Jiuming
Chen, Jiayang
Wang, Yixuan
Hong, Liang
Xiao, Jin
Zheng, Liangzhen
Krishnamoorthi, Tejas
King, Irwin
Wang, Sheng
Yin, Peng
Collins, James J
Li, Yu
description Accurate prediction of RNA three-dimensional (3D) structures remains an unsolved challenge. Determining RNA 3D structures is crucial for understanding their functions and informing RNA-targeting drug development and synthetic biology design. The structural flexibility of RNA, which leads to the scarcity of experimentally determined data, complicates computational prediction efforts. Here we present RhoFold+, an RNA language model-based deep learning method that accurately predicts 3D structures of single-chain RNAs from sequences. By integrating an RNA language model pretrained on ~23.7 million RNA sequences and leveraging techniques to address data scarcity, RhoFold+ offers a fully automated end-to-end pipeline for RNA 3D structure prediction. Retrospective evaluations on RNA-Puzzles and CASP15 natural RNA targets demonstrate the superiority of RhoFold+ over existing methods, including human expert groups. Its efficacy and generalizability are further validated through cross-family and cross-type assessments, as well as time-censored benchmarks. Additionally, RhoFold+ predicts RNA secondary structures and interhelical angles, providing empirically verifiable features that broaden its applicability to RNA structure and function studies.
doi_str_mv 10.1038/s41592-024-02487-0
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3131852471</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3131852471</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1430-17497eb895aab1dda75ccef717e48be93e7f1da9a2421d0a75a8bf7a57df77483</originalsourceid><addsrcrecordid>eNo9kE9PwzAMxSMEYmPwBTigHLkU4iYh6XEaf6UJJAQStyhN3FHUriVpDnx7OrZxsGzJ7z1bP0LOgV0B4_o6CpBFnrFcbEqrjB2QKUihMwVMHu5nVsCEnMT4xRjnIpfHZMILqXIFN1PyMXcuBTsgfX2eU35L4xCSG1JA2gf0tRvqbk1TrNcramlj16tkV0jbzmOTlTaipx6xpw3asP4T9X3orPs8JUeVbSKe7fqMvN_fvS0es-XLw9NivswcCM4yUKJQWOpCWluC91ZJ57BSoFDoEguOqgJvC5uLHDwb11aXlbJS-UopofmMXG5zx7PfCeNg2jo6bMZXsUvRcOCgZS4UjNJ8K3WhizFgZfpQtzb8GGBmQ9RsiZqRpvkjathoutjlp7JF_2_ZI-S_qYpxjQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3131852471</pqid></control><display><type>article</type><title>Accurate RNA 3D structure prediction using a language model-based deep learning approach</title><source>Nature</source><source>Alma/SFX Local Collection</source><creator>Shen, Tao ; Hu, Zhihang ; Sun, Siqi ; Liu, Di ; Wong, Felix ; Wang, Jiuming ; Chen, Jiayang ; Wang, Yixuan ; Hong, Liang ; Xiao, Jin ; Zheng, Liangzhen ; Krishnamoorthi, Tejas ; King, Irwin ; Wang, Sheng ; Yin, Peng ; Collins, James J ; Li, Yu</creator><creatorcontrib>Shen, Tao ; Hu, Zhihang ; Sun, Siqi ; Liu, Di ; Wong, Felix ; Wang, Jiuming ; Chen, Jiayang ; Wang, Yixuan ; Hong, Liang ; Xiao, Jin ; Zheng, Liangzhen ; Krishnamoorthi, Tejas ; King, Irwin ; Wang, Sheng ; Yin, Peng ; Collins, James J ; Li, Yu</creatorcontrib><description>Accurate prediction of RNA three-dimensional (3D) structures remains an unsolved challenge. Determining RNA 3D structures is crucial for understanding their functions and informing RNA-targeting drug development and synthetic biology design. The structural flexibility of RNA, which leads to the scarcity of experimentally determined data, complicates computational prediction efforts. Here we present RhoFold+, an RNA language model-based deep learning method that accurately predicts 3D structures of single-chain RNAs from sequences. By integrating an RNA language model pretrained on ~23.7 million RNA sequences and leveraging techniques to address data scarcity, RhoFold+ offers a fully automated end-to-end pipeline for RNA 3D structure prediction. Retrospective evaluations on RNA-Puzzles and CASP15 natural RNA targets demonstrate the superiority of RhoFold+ over existing methods, including human expert groups. Its efficacy and generalizability are further validated through cross-family and cross-type assessments, as well as time-censored benchmarks. Additionally, RhoFold+ predicts RNA secondary structures and interhelical angles, providing empirically verifiable features that broaden its applicability to RNA structure and function studies.</description><identifier>ISSN: 1548-7091</identifier><identifier>ISSN: 1548-7105</identifier><identifier>EISSN: 1548-7105</identifier><identifier>DOI: 10.1038/s41592-024-02487-0</identifier><identifier>PMID: 39572716</identifier><language>eng</language><publisher>United States</publisher><ispartof>Nature methods, 2024-11</ispartof><rights>2024. The Author(s).</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1430-17497eb895aab1dda75ccef717e48be93e7f1da9a2421d0a75a8bf7a57df77483</cites><orcidid>0000-0002-5560-8246 ; 0000-0001-5059-1492 ; 0000-0001-7240-8724 ; 0000-0002-0708-7466 ; 0009-0003-9591-156X ; 0000-0002-3664-6722 ; 0000-0002-2769-6357 ; 0000-0003-4210-1670 ; 0000-0002-6129-3092</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,782,786,27931,27932</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39572716$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Shen, Tao</creatorcontrib><creatorcontrib>Hu, Zhihang</creatorcontrib><creatorcontrib>Sun, Siqi</creatorcontrib><creatorcontrib>Liu, Di</creatorcontrib><creatorcontrib>Wong, Felix</creatorcontrib><creatorcontrib>Wang, Jiuming</creatorcontrib><creatorcontrib>Chen, Jiayang</creatorcontrib><creatorcontrib>Wang, Yixuan</creatorcontrib><creatorcontrib>Hong, Liang</creatorcontrib><creatorcontrib>Xiao, Jin</creatorcontrib><creatorcontrib>Zheng, Liangzhen</creatorcontrib><creatorcontrib>Krishnamoorthi, Tejas</creatorcontrib><creatorcontrib>King, Irwin</creatorcontrib><creatorcontrib>Wang, Sheng</creatorcontrib><creatorcontrib>Yin, Peng</creatorcontrib><creatorcontrib>Collins, James J</creatorcontrib><creatorcontrib>Li, Yu</creatorcontrib><title>Accurate RNA 3D structure prediction using a language model-based deep learning approach</title><title>Nature methods</title><addtitle>Nat Methods</addtitle><description>Accurate prediction of RNA three-dimensional (3D) structures remains an unsolved challenge. Determining RNA 3D structures is crucial for understanding their functions and informing RNA-targeting drug development and synthetic biology design. The structural flexibility of RNA, which leads to the scarcity of experimentally determined data, complicates computational prediction efforts. Here we present RhoFold+, an RNA language model-based deep learning method that accurately predicts 3D structures of single-chain RNAs from sequences. By integrating an RNA language model pretrained on ~23.7 million RNA sequences and leveraging techniques to address data scarcity, RhoFold+ offers a fully automated end-to-end pipeline for RNA 3D structure prediction. Retrospective evaluations on RNA-Puzzles and CASP15 natural RNA targets demonstrate the superiority of RhoFold+ over existing methods, including human expert groups. Its efficacy and generalizability are further validated through cross-family and cross-type assessments, as well as time-censored benchmarks. Additionally, RhoFold+ predicts RNA secondary structures and interhelical angles, providing empirically verifiable features that broaden its applicability to RNA structure and function studies.</description><issn>1548-7091</issn><issn>1548-7105</issn><issn>1548-7105</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNo9kE9PwzAMxSMEYmPwBTigHLkU4iYh6XEaf6UJJAQStyhN3FHUriVpDnx7OrZxsGzJ7z1bP0LOgV0B4_o6CpBFnrFcbEqrjB2QKUihMwVMHu5nVsCEnMT4xRjnIpfHZMILqXIFN1PyMXcuBTsgfX2eU35L4xCSG1JA2gf0tRvqbk1TrNcramlj16tkV0jbzmOTlTaipx6xpw3asP4T9X3orPs8JUeVbSKe7fqMvN_fvS0es-XLw9NivswcCM4yUKJQWOpCWluC91ZJ57BSoFDoEguOqgJvC5uLHDwb11aXlbJS-UopofmMXG5zx7PfCeNg2jo6bMZXsUvRcOCgZS4UjNJ8K3WhizFgZfpQtzb8GGBmQ9RsiZqRpvkjathoutjlp7JF_2_ZI-S_qYpxjQ</recordid><startdate>20241121</startdate><enddate>20241121</enddate><creator>Shen, Tao</creator><creator>Hu, Zhihang</creator><creator>Sun, Siqi</creator><creator>Liu, Di</creator><creator>Wong, Felix</creator><creator>Wang, Jiuming</creator><creator>Chen, Jiayang</creator><creator>Wang, Yixuan</creator><creator>Hong, Liang</creator><creator>Xiao, Jin</creator><creator>Zheng, Liangzhen</creator><creator>Krishnamoorthi, Tejas</creator><creator>King, Irwin</creator><creator>Wang, Sheng</creator><creator>Yin, Peng</creator><creator>Collins, James J</creator><creator>Li, Yu</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-5560-8246</orcidid><orcidid>https://orcid.org/0000-0001-5059-1492</orcidid><orcidid>https://orcid.org/0000-0001-7240-8724</orcidid><orcidid>https://orcid.org/0000-0002-0708-7466</orcidid><orcidid>https://orcid.org/0009-0003-9591-156X</orcidid><orcidid>https://orcid.org/0000-0002-3664-6722</orcidid><orcidid>https://orcid.org/0000-0002-2769-6357</orcidid><orcidid>https://orcid.org/0000-0003-4210-1670</orcidid><orcidid>https://orcid.org/0000-0002-6129-3092</orcidid></search><sort><creationdate>20241121</creationdate><title>Accurate RNA 3D structure prediction using a language model-based deep learning approach</title><author>Shen, Tao ; Hu, Zhihang ; Sun, Siqi ; Liu, Di ; Wong, Felix ; Wang, Jiuming ; Chen, Jiayang ; Wang, Yixuan ; Hong, Liang ; Xiao, Jin ; Zheng, Liangzhen ; Krishnamoorthi, Tejas ; King, Irwin ; Wang, Sheng ; Yin, Peng ; Collins, James J ; Li, Yu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1430-17497eb895aab1dda75ccef717e48be93e7f1da9a2421d0a75a8bf7a57df77483</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shen, Tao</creatorcontrib><creatorcontrib>Hu, Zhihang</creatorcontrib><creatorcontrib>Sun, Siqi</creatorcontrib><creatorcontrib>Liu, Di</creatorcontrib><creatorcontrib>Wong, Felix</creatorcontrib><creatorcontrib>Wang, Jiuming</creatorcontrib><creatorcontrib>Chen, Jiayang</creatorcontrib><creatorcontrib>Wang, Yixuan</creatorcontrib><creatorcontrib>Hong, Liang</creatorcontrib><creatorcontrib>Xiao, Jin</creatorcontrib><creatorcontrib>Zheng, Liangzhen</creatorcontrib><creatorcontrib>Krishnamoorthi, Tejas</creatorcontrib><creatorcontrib>King, Irwin</creatorcontrib><creatorcontrib>Wang, Sheng</creatorcontrib><creatorcontrib>Yin, Peng</creatorcontrib><creatorcontrib>Collins, James J</creatorcontrib><creatorcontrib>Li, Yu</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Nature methods</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shen, Tao</au><au>Hu, Zhihang</au><au>Sun, Siqi</au><au>Liu, Di</au><au>Wong, Felix</au><au>Wang, Jiuming</au><au>Chen, Jiayang</au><au>Wang, Yixuan</au><au>Hong, Liang</au><au>Xiao, Jin</au><au>Zheng, Liangzhen</au><au>Krishnamoorthi, Tejas</au><au>King, Irwin</au><au>Wang, Sheng</au><au>Yin, Peng</au><au>Collins, James J</au><au>Li, Yu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Accurate RNA 3D structure prediction using a language model-based deep learning approach</atitle><jtitle>Nature methods</jtitle><addtitle>Nat Methods</addtitle><date>2024-11-21</date><risdate>2024</risdate><issn>1548-7091</issn><issn>1548-7105</issn><eissn>1548-7105</eissn><abstract>Accurate prediction of RNA three-dimensional (3D) structures remains an unsolved challenge. Determining RNA 3D structures is crucial for understanding their functions and informing RNA-targeting drug development and synthetic biology design. The structural flexibility of RNA, which leads to the scarcity of experimentally determined data, complicates computational prediction efforts. Here we present RhoFold+, an RNA language model-based deep learning method that accurately predicts 3D structures of single-chain RNAs from sequences. By integrating an RNA language model pretrained on ~23.7 million RNA sequences and leveraging techniques to address data scarcity, RhoFold+ offers a fully automated end-to-end pipeline for RNA 3D structure prediction. Retrospective evaluations on RNA-Puzzles and CASP15 natural RNA targets demonstrate the superiority of RhoFold+ over existing methods, including human expert groups. Its efficacy and generalizability are further validated through cross-family and cross-type assessments, as well as time-censored benchmarks. Additionally, RhoFold+ predicts RNA secondary structures and interhelical angles, providing empirically verifiable features that broaden its applicability to RNA structure and function studies.</abstract><cop>United States</cop><pmid>39572716</pmid><doi>10.1038/s41592-024-02487-0</doi><orcidid>https://orcid.org/0000-0002-5560-8246</orcidid><orcidid>https://orcid.org/0000-0001-5059-1492</orcidid><orcidid>https://orcid.org/0000-0001-7240-8724</orcidid><orcidid>https://orcid.org/0000-0002-0708-7466</orcidid><orcidid>https://orcid.org/0009-0003-9591-156X</orcidid><orcidid>https://orcid.org/0000-0002-3664-6722</orcidid><orcidid>https://orcid.org/0000-0002-2769-6357</orcidid><orcidid>https://orcid.org/0000-0003-4210-1670</orcidid><orcidid>https://orcid.org/0000-0002-6129-3092</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1548-7091
ispartof Nature methods, 2024-11
issn 1548-7091
1548-7105
1548-7105
language eng
recordid cdi_proquest_miscellaneous_3131852471
source Nature; Alma/SFX Local Collection
title Accurate RNA 3D structure prediction using a language model-based deep learning approach
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-04T17%3A24%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Accurate%20RNA%203D%20structure%20prediction%20using%20a%20language%20model-based%20deep%20learning%20approach&rft.jtitle=Nature%20methods&rft.au=Shen,%20Tao&rft.date=2024-11-21&rft.issn=1548-7091&rft.eissn=1548-7105&rft_id=info:doi/10.1038/s41592-024-02487-0&rft_dat=%3Cproquest_cross%3E3131852471%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3131852471&rft_id=info:pmid/39572716&rfr_iscdi=true