Spectral prediction method based on the transformer neural network for high-fidelity color reproduction

Color distortion often occurs during transmission and reproduction processes, and existing spectral prediction methods have the disadvantage of low prediction accuracy in halftone reproduction. Addressing this issue, this paper establishes a halftone dataset composed of four-color inks (CMYK) mixtur...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Optics express 2024-08, Vol.32 (17), p.30481
Hauptverfasser: Li, Huailin, Zheng, Yingying, Liu, Qinsen, Sun, Bangyong
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 17
container_start_page 30481
container_title Optics express
container_volume 32
creator Li, Huailin
Zheng, Yingying
Liu, Qinsen
Sun, Bangyong
description Color distortion often occurs during transmission and reproduction processes, and existing spectral prediction methods have the disadvantage of low prediction accuracy in halftone reproduction. Addressing this issue, this paper establishes a halftone dataset composed of four-color inks (CMYK) mixtures. Based on this, the transformer network is introduced to model and characterize the spectral features of mixed inks, and a forward color formulation prediction model and a reverse spectral prediction model combining halftone reproduction with spectral sequences are proposed, namely the spectrum-color transformer (SC-Former). Color reproduction quality assessment experiments are conducted using the dataset established in this paper and the international standard Ugra/Fogra Media Wedge V3.0 test set. The experimental results show that the SC-Former model outperforms traditional physical models and data-driven prediction models in terms of color reproduction effects and spectral prediction accuracy. This research contributes to the development of high-fidelity color reproduction techniques.
doi_str_mv 10.1364/OE.534540
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3131852162</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3131852162</sourcerecordid><originalsourceid>FETCH-LOGICAL-c210t-19ff8be888d9d280bb970d7dc044f14390c8b2601653ec1b25b1f2a8de7ced793</originalsourceid><addsrcrecordid>eNpNkEtPwzAQhC0EoqVw4A8gH-GQ4ldi54hQeUiVegDOUWxvmkASF9sR6r8npQVx2t3RtzPSIHRJyZzyTNyuFvOUi1SQIzSlJBeJIEoe_9sn6CyEd0KokLk8RROep5IzoqZo_bIBE33Z4o0H25jYuB53EGtnsS4DWDzesQY8Mn2onO_A4x6G3UcP8cv5DzyquG7WdVI1FtombrFx7ah52Hhnhx_Pc3RSlW2Ai8OcobeHxev9U7JcPT7f3y0TwyiJCc2rSmlQStncMkW0ziWx0hoiREUFz4lRmmWEZikHQzVLNa1YqSxIA1bmfIau975j9OcAIRZdEwy0bdmDG0LBKacqZTRjI3qzR413IXioio1vutJvC0qKXa_FalHsex3Zq4PtoDuwf-RvkfwbUtt0YQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3131852162</pqid></control><display><type>article</type><title>Spectral prediction method based on the transformer neural network for high-fidelity color reproduction</title><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Li, Huailin ; Zheng, Yingying ; Liu, Qinsen ; Sun, Bangyong</creator><creatorcontrib>Li, Huailin ; Zheng, Yingying ; Liu, Qinsen ; Sun, Bangyong</creatorcontrib><description>Color distortion often occurs during transmission and reproduction processes, and existing spectral prediction methods have the disadvantage of low prediction accuracy in halftone reproduction. Addressing this issue, this paper establishes a halftone dataset composed of four-color inks (CMYK) mixtures. Based on this, the transformer network is introduced to model and characterize the spectral features of mixed inks, and a forward color formulation prediction model and a reverse spectral prediction model combining halftone reproduction with spectral sequences are proposed, namely the spectrum-color transformer (SC-Former). Color reproduction quality assessment experiments are conducted using the dataset established in this paper and the international standard Ugra/Fogra Media Wedge V3.0 test set. The experimental results show that the SC-Former model outperforms traditional physical models and data-driven prediction models in terms of color reproduction effects and spectral prediction accuracy. This research contributes to the development of high-fidelity color reproduction techniques.</description><identifier>ISSN: 1094-4087</identifier><identifier>EISSN: 1094-4087</identifier><identifier>DOI: 10.1364/OE.534540</identifier><identifier>PMID: 39573208</identifier><language>eng</language><publisher>United States</publisher><ispartof>Optics express, 2024-08, Vol.32 (17), p.30481</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c210t-19ff8be888d9d280bb970d7dc044f14390c8b2601653ec1b25b1f2a8de7ced793</cites><orcidid>0000-0003-3843-8510</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,864,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39573208$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Huailin</creatorcontrib><creatorcontrib>Zheng, Yingying</creatorcontrib><creatorcontrib>Liu, Qinsen</creatorcontrib><creatorcontrib>Sun, Bangyong</creatorcontrib><title>Spectral prediction method based on the transformer neural network for high-fidelity color reproduction</title><title>Optics express</title><addtitle>Opt Express</addtitle><description>Color distortion often occurs during transmission and reproduction processes, and existing spectral prediction methods have the disadvantage of low prediction accuracy in halftone reproduction. Addressing this issue, this paper establishes a halftone dataset composed of four-color inks (CMYK) mixtures. Based on this, the transformer network is introduced to model and characterize the spectral features of mixed inks, and a forward color formulation prediction model and a reverse spectral prediction model combining halftone reproduction with spectral sequences are proposed, namely the spectrum-color transformer (SC-Former). Color reproduction quality assessment experiments are conducted using the dataset established in this paper and the international standard Ugra/Fogra Media Wedge V3.0 test set. The experimental results show that the SC-Former model outperforms traditional physical models and data-driven prediction models in terms of color reproduction effects and spectral prediction accuracy. This research contributes to the development of high-fidelity color reproduction techniques.</description><issn>1094-4087</issn><issn>1094-4087</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpNkEtPwzAQhC0EoqVw4A8gH-GQ4ldi54hQeUiVegDOUWxvmkASF9sR6r8npQVx2t3RtzPSIHRJyZzyTNyuFvOUi1SQIzSlJBeJIEoe_9sn6CyEd0KokLk8RROep5IzoqZo_bIBE33Z4o0H25jYuB53EGtnsS4DWDzesQY8Mn2onO_A4x6G3UcP8cv5DzyquG7WdVI1FtombrFx7ah52Hhnhx_Pc3RSlW2Ai8OcobeHxev9U7JcPT7f3y0TwyiJCc2rSmlQStncMkW0ziWx0hoiREUFz4lRmmWEZikHQzVLNa1YqSxIA1bmfIau975j9OcAIRZdEwy0bdmDG0LBKacqZTRjI3qzR413IXioio1vutJvC0qKXa_FalHsex3Zq4PtoDuwf-RvkfwbUtt0YQ</recordid><startdate>20240812</startdate><enddate>20240812</enddate><creator>Li, Huailin</creator><creator>Zheng, Yingying</creator><creator>Liu, Qinsen</creator><creator>Sun, Bangyong</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-3843-8510</orcidid></search><sort><creationdate>20240812</creationdate><title>Spectral prediction method based on the transformer neural network for high-fidelity color reproduction</title><author>Li, Huailin ; Zheng, Yingying ; Liu, Qinsen ; Sun, Bangyong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c210t-19ff8be888d9d280bb970d7dc044f14390c8b2601653ec1b25b1f2a8de7ced793</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Huailin</creatorcontrib><creatorcontrib>Zheng, Yingying</creatorcontrib><creatorcontrib>Liu, Qinsen</creatorcontrib><creatorcontrib>Sun, Bangyong</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Optics express</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Huailin</au><au>Zheng, Yingying</au><au>Liu, Qinsen</au><au>Sun, Bangyong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spectral prediction method based on the transformer neural network for high-fidelity color reproduction</atitle><jtitle>Optics express</jtitle><addtitle>Opt Express</addtitle><date>2024-08-12</date><risdate>2024</risdate><volume>32</volume><issue>17</issue><spage>30481</spage><pages>30481-</pages><issn>1094-4087</issn><eissn>1094-4087</eissn><abstract>Color distortion often occurs during transmission and reproduction processes, and existing spectral prediction methods have the disadvantage of low prediction accuracy in halftone reproduction. Addressing this issue, this paper establishes a halftone dataset composed of four-color inks (CMYK) mixtures. Based on this, the transformer network is introduced to model and characterize the spectral features of mixed inks, and a forward color formulation prediction model and a reverse spectral prediction model combining halftone reproduction with spectral sequences are proposed, namely the spectrum-color transformer (SC-Former). Color reproduction quality assessment experiments are conducted using the dataset established in this paper and the international standard Ugra/Fogra Media Wedge V3.0 test set. The experimental results show that the SC-Former model outperforms traditional physical models and data-driven prediction models in terms of color reproduction effects and spectral prediction accuracy. This research contributes to the development of high-fidelity color reproduction techniques.</abstract><cop>United States</cop><pmid>39573208</pmid><doi>10.1364/OE.534540</doi><orcidid>https://orcid.org/0000-0003-3843-8510</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1094-4087
ispartof Optics express, 2024-08, Vol.32 (17), p.30481
issn 1094-4087
1094-4087
language eng
recordid cdi_proquest_miscellaneous_3131852162
source DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals
title Spectral prediction method based on the transformer neural network for high-fidelity color reproduction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T20%3A22%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spectral%20prediction%20method%20based%20on%20the%20transformer%20neural%20network%20for%20high-fidelity%20color%20reproduction&rft.jtitle=Optics%20express&rft.au=Li,%20Huailin&rft.date=2024-08-12&rft.volume=32&rft.issue=17&rft.spage=30481&rft.pages=30481-&rft.issn=1094-4087&rft.eissn=1094-4087&rft_id=info:doi/10.1364/OE.534540&rft_dat=%3Cproquest_cross%3E3131852162%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3131852162&rft_id=info:pmid/39573208&rfr_iscdi=true