Clinical and Social Characterization of Patients Hospitalized for COPD Exacerbation Using Machine Learning Tools

[Display omitted] This study aims to employ machine learning (ML) tools to cluster patients hospitalized for acute exacerbations of chronic obstructive pulmonary disease (COPD) based on their diverse social and clinical characteristics. This clustering is intended to facilitate the subsequent analys...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Archivos de bronconeumología (English ed.) 2024-11
Hauptverfasser: Casal-Guisande, Manuel, Represas-Represas, Cristina, Golpe, Rafael, Fernández-García, Alberto, González-Montaos, Almudena, Comesaña-Campos, Alberto, Ruano-Raviña, Alberto, Fernández-Villar, Alberto
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title Archivos de bronconeumología (English ed.)
container_volume
creator Casal-Guisande, Manuel
Represas-Represas, Cristina
Golpe, Rafael
Fernández-García, Alberto
González-Montaos, Almudena
Comesaña-Campos, Alberto
Ruano-Raviña, Alberto
Fernández-Villar, Alberto
description [Display omitted] This study aims to employ machine learning (ML) tools to cluster patients hospitalized for acute exacerbations of chronic obstructive pulmonary disease (COPD) based on their diverse social and clinical characteristics. This clustering is intended to facilitate the subsequent analysis of differences in clinical outcomes. We analysed a cohort of patients with severe COPD from two Pulmonary Departments in north-western Spain using the k-prototypes algorithm, incorporating demographic, clinical, and social data. The resulting clusters were correlated with metrics such as readmissions, mortality, and place of death. Additionally, we developed an intelligent clinical decision support system (ICDSS) using a supervised ML model (Random Forest) to assign new patients to these clusters based on a reduced set of variables. The cohort consisted of 524 patients, with an average age of 70.30±9.35 years, 77.67% male, and an average FEV1 of 44.43±15.4. Four distinct clusters (A–D) were identified with varying clinical–demographic and social profiles. Cluster D showed the highest levels of dependency, social isolation, and increased rates of readmissions and mortality. Cluster B was characterized by prevalent cardiovascular comorbidities. Cluster C included a younger demographic, with a higher proportion of women and significant psychosocial challenges. The ICDSS, using five key variables, achieved areas under the ROC curve of at least 0.91. ML tools effectively facilitate the social and clinical clustering of patients with severe COPD, closely related to resource utilization and prognostic profiles. The ICDSS enhances the ability to characterize new patients in clinical settings.
doi_str_mv 10.1016/j.arbres.2024.10.010
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3131851594</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0300289624004137</els_id><sourcerecordid>3131851594</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1561-21785339d5465661a2a76771151bf23943254866f900c5b2c94dfd7c31e0a0823</originalsourceid><addsrcrecordid>eNp9kM1O6zAQhS0EglJ4A3TlJZsWjx07yQbpKvxKRSABa8txJhdXadxrpwh4elwFWLKao6MzZzQfISfA5sBAnS3nJtQB45wzniVrzoDtkAnIvJxx4OUumTDB2IwXpToghzEuGeNSZHyfHIhS5lwomJB11bneWdNR0zf00VuXZPVigrEDBvdhBud76lv6kBT2Q6Q3Pq7dYDr3gQ1tfaDV_cMFvXwzFkM9xp-j6__RO2NfXI90gSb0W-PJ-y4ekb3WdBGPv-aUPF9dPlU3s8X99W31dzGzIBWkD_JCClE2MlNSKTDc5CrPASTULRdlJrjMCqXakjEra27LrGmb3ApAZljBxZScjr3r4P9vMA565aLFrjM9-k3UAgQUEmRqmpJsjNrgYwzY6nVwKxPeNTC9Za2XemStt6y3bmKd1v58XdjUK2x-lr7hpsD5GMD056vDoKNNDC02LqAddOPd7xc-AdbHkGw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3131851594</pqid></control><display><type>article</type><title>Clinical and Social Characterization of Patients Hospitalized for COPD Exacerbation Using Machine Learning Tools</title><source>Elsevier ScienceDirect Journals</source><creator>Casal-Guisande, Manuel ; Represas-Represas, Cristina ; Golpe, Rafael ; Fernández-García, Alberto ; González-Montaos, Almudena ; Comesaña-Campos, Alberto ; Ruano-Raviña, Alberto ; Fernández-Villar, Alberto</creator><creatorcontrib>Casal-Guisande, Manuel ; Represas-Represas, Cristina ; Golpe, Rafael ; Fernández-García, Alberto ; González-Montaos, Almudena ; Comesaña-Campos, Alberto ; Ruano-Raviña, Alberto ; Fernández-Villar, Alberto</creatorcontrib><description>[Display omitted] This study aims to employ machine learning (ML) tools to cluster patients hospitalized for acute exacerbations of chronic obstructive pulmonary disease (COPD) based on their diverse social and clinical characteristics. This clustering is intended to facilitate the subsequent analysis of differences in clinical outcomes. We analysed a cohort of patients with severe COPD from two Pulmonary Departments in north-western Spain using the k-prototypes algorithm, incorporating demographic, clinical, and social data. The resulting clusters were correlated with metrics such as readmissions, mortality, and place of death. Additionally, we developed an intelligent clinical decision support system (ICDSS) using a supervised ML model (Random Forest) to assign new patients to these clusters based on a reduced set of variables. The cohort consisted of 524 patients, with an average age of 70.30±9.35 years, 77.67% male, and an average FEV1 of 44.43±15.4. Four distinct clusters (A–D) were identified with varying clinical–demographic and social profiles. Cluster D showed the highest levels of dependency, social isolation, and increased rates of readmissions and mortality. Cluster B was characterized by prevalent cardiovascular comorbidities. Cluster C included a younger demographic, with a higher proportion of women and significant psychosocial challenges. The ICDSS, using five key variables, achieved areas under the ROC curve of at least 0.91. ML tools effectively facilitate the social and clinical clustering of patients with severe COPD, closely related to resource utilization and prognostic profiles. The ICDSS enhances the ability to characterize new patients in clinical settings.</description><identifier>ISSN: 0300-2896</identifier><identifier>ISSN: 1579-2129</identifier><identifier>EISSN: 1579-2129</identifier><identifier>DOI: 10.1016/j.arbres.2024.10.010</identifier><identifier>PMID: 39572361</identifier><language>eng</language><publisher>Spain: Elsevier España, S.L.U</publisher><subject>Chronic obstructive pulmonary disease ; Clustering ; Exacerbation ; Intelligent clinical decision support system ; Machine learning ; Mortality ; Social determinants of health</subject><ispartof>Archivos de bronconeumología (English ed.), 2024-11</ispartof><rights>2024 SEPAR</rights><rights>Copyright © 2024 SEPAR. Published by Elsevier España, S.L.U. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1561-21785339d5465661a2a76771151bf23943254866f900c5b2c94dfd7c31e0a0823</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.arbres.2024.10.010$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,778,782,3539,27907,27908,45978</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39572361$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Casal-Guisande, Manuel</creatorcontrib><creatorcontrib>Represas-Represas, Cristina</creatorcontrib><creatorcontrib>Golpe, Rafael</creatorcontrib><creatorcontrib>Fernández-García, Alberto</creatorcontrib><creatorcontrib>González-Montaos, Almudena</creatorcontrib><creatorcontrib>Comesaña-Campos, Alberto</creatorcontrib><creatorcontrib>Ruano-Raviña, Alberto</creatorcontrib><creatorcontrib>Fernández-Villar, Alberto</creatorcontrib><title>Clinical and Social Characterization of Patients Hospitalized for COPD Exacerbation Using Machine Learning Tools</title><title>Archivos de bronconeumología (English ed.)</title><addtitle>Arch Bronconeumol</addtitle><description>[Display omitted] This study aims to employ machine learning (ML) tools to cluster patients hospitalized for acute exacerbations of chronic obstructive pulmonary disease (COPD) based on their diverse social and clinical characteristics. This clustering is intended to facilitate the subsequent analysis of differences in clinical outcomes. We analysed a cohort of patients with severe COPD from two Pulmonary Departments in north-western Spain using the k-prototypes algorithm, incorporating demographic, clinical, and social data. The resulting clusters were correlated with metrics such as readmissions, mortality, and place of death. Additionally, we developed an intelligent clinical decision support system (ICDSS) using a supervised ML model (Random Forest) to assign new patients to these clusters based on a reduced set of variables. The cohort consisted of 524 patients, with an average age of 70.30±9.35 years, 77.67% male, and an average FEV1 of 44.43±15.4. Four distinct clusters (A–D) were identified with varying clinical–demographic and social profiles. Cluster D showed the highest levels of dependency, social isolation, and increased rates of readmissions and mortality. Cluster B was characterized by prevalent cardiovascular comorbidities. Cluster C included a younger demographic, with a higher proportion of women and significant psychosocial challenges. The ICDSS, using five key variables, achieved areas under the ROC curve of at least 0.91. ML tools effectively facilitate the social and clinical clustering of patients with severe COPD, closely related to resource utilization and prognostic profiles. The ICDSS enhances the ability to characterize new patients in clinical settings.</description><subject>Chronic obstructive pulmonary disease</subject><subject>Clustering</subject><subject>Exacerbation</subject><subject>Intelligent clinical decision support system</subject><subject>Machine learning</subject><subject>Mortality</subject><subject>Social determinants of health</subject><issn>0300-2896</issn><issn>1579-2129</issn><issn>1579-2129</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kM1O6zAQhS0EglJ4A3TlJZsWjx07yQbpKvxKRSABa8txJhdXadxrpwh4elwFWLKao6MzZzQfISfA5sBAnS3nJtQB45wzniVrzoDtkAnIvJxx4OUumTDB2IwXpToghzEuGeNSZHyfHIhS5lwomJB11bneWdNR0zf00VuXZPVigrEDBvdhBud76lv6kBT2Q6Q3Pq7dYDr3gQ1tfaDV_cMFvXwzFkM9xp-j6__RO2NfXI90gSb0W-PJ-y4ekb3WdBGPv-aUPF9dPlU3s8X99W31dzGzIBWkD_JCClE2MlNSKTDc5CrPASTULRdlJrjMCqXakjEra27LrGmb3ApAZljBxZScjr3r4P9vMA565aLFrjM9-k3UAgQUEmRqmpJsjNrgYwzY6nVwKxPeNTC9Za2XemStt6y3bmKd1v58XdjUK2x-lr7hpsD5GMD056vDoKNNDC02LqAddOPd7xc-AdbHkGw</recordid><startdate>20241102</startdate><enddate>20241102</enddate><creator>Casal-Guisande, Manuel</creator><creator>Represas-Represas, Cristina</creator><creator>Golpe, Rafael</creator><creator>Fernández-García, Alberto</creator><creator>González-Montaos, Almudena</creator><creator>Comesaña-Campos, Alberto</creator><creator>Ruano-Raviña, Alberto</creator><creator>Fernández-Villar, Alberto</creator><general>Elsevier España, S.L.U</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20241102</creationdate><title>Clinical and Social Characterization of Patients Hospitalized for COPD Exacerbation Using Machine Learning Tools</title><author>Casal-Guisande, Manuel ; Represas-Represas, Cristina ; Golpe, Rafael ; Fernández-García, Alberto ; González-Montaos, Almudena ; Comesaña-Campos, Alberto ; Ruano-Raviña, Alberto ; Fernández-Villar, Alberto</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1561-21785339d5465661a2a76771151bf23943254866f900c5b2c94dfd7c31e0a0823</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Chronic obstructive pulmonary disease</topic><topic>Clustering</topic><topic>Exacerbation</topic><topic>Intelligent clinical decision support system</topic><topic>Machine learning</topic><topic>Mortality</topic><topic>Social determinants of health</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Casal-Guisande, Manuel</creatorcontrib><creatorcontrib>Represas-Represas, Cristina</creatorcontrib><creatorcontrib>Golpe, Rafael</creatorcontrib><creatorcontrib>Fernández-García, Alberto</creatorcontrib><creatorcontrib>González-Montaos, Almudena</creatorcontrib><creatorcontrib>Comesaña-Campos, Alberto</creatorcontrib><creatorcontrib>Ruano-Raviña, Alberto</creatorcontrib><creatorcontrib>Fernández-Villar, Alberto</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Archivos de bronconeumología (English ed.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Casal-Guisande, Manuel</au><au>Represas-Represas, Cristina</au><au>Golpe, Rafael</au><au>Fernández-García, Alberto</au><au>González-Montaos, Almudena</au><au>Comesaña-Campos, Alberto</au><au>Ruano-Raviña, Alberto</au><au>Fernández-Villar, Alberto</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Clinical and Social Characterization of Patients Hospitalized for COPD Exacerbation Using Machine Learning Tools</atitle><jtitle>Archivos de bronconeumología (English ed.)</jtitle><addtitle>Arch Bronconeumol</addtitle><date>2024-11-02</date><risdate>2024</risdate><issn>0300-2896</issn><issn>1579-2129</issn><eissn>1579-2129</eissn><abstract>[Display omitted] This study aims to employ machine learning (ML) tools to cluster patients hospitalized for acute exacerbations of chronic obstructive pulmonary disease (COPD) based on their diverse social and clinical characteristics. This clustering is intended to facilitate the subsequent analysis of differences in clinical outcomes. We analysed a cohort of patients with severe COPD from two Pulmonary Departments in north-western Spain using the k-prototypes algorithm, incorporating demographic, clinical, and social data. The resulting clusters were correlated with metrics such as readmissions, mortality, and place of death. Additionally, we developed an intelligent clinical decision support system (ICDSS) using a supervised ML model (Random Forest) to assign new patients to these clusters based on a reduced set of variables. The cohort consisted of 524 patients, with an average age of 70.30±9.35 years, 77.67% male, and an average FEV1 of 44.43±15.4. Four distinct clusters (A–D) were identified with varying clinical–demographic and social profiles. Cluster D showed the highest levels of dependency, social isolation, and increased rates of readmissions and mortality. Cluster B was characterized by prevalent cardiovascular comorbidities. Cluster C included a younger demographic, with a higher proportion of women and significant psychosocial challenges. The ICDSS, using five key variables, achieved areas under the ROC curve of at least 0.91. ML tools effectively facilitate the social and clinical clustering of patients with severe COPD, closely related to resource utilization and prognostic profiles. The ICDSS enhances the ability to characterize new patients in clinical settings.</abstract><cop>Spain</cop><pub>Elsevier España, S.L.U</pub><pmid>39572361</pmid><doi>10.1016/j.arbres.2024.10.010</doi></addata></record>
fulltext fulltext
identifier ISSN: 0300-2896
ispartof Archivos de bronconeumología (English ed.), 2024-11
issn 0300-2896
1579-2129
1579-2129
language eng
recordid cdi_proquest_miscellaneous_3131851594
source Elsevier ScienceDirect Journals
subjects Chronic obstructive pulmonary disease
Clustering
Exacerbation
Intelligent clinical decision support system
Machine learning
Mortality
Social determinants of health
title Clinical and Social Characterization of Patients Hospitalized for COPD Exacerbation Using Machine Learning Tools
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T18%3A56%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Clinical%20and%20Social%20Characterization%20of%20Patients%20Hospitalized%20for%20COPD%20Exacerbation%20Using%20Machine%20Learning%20Tools&rft.jtitle=Archivos%20de%20bronconeumologi%CC%81a%20(English%20ed.)&rft.au=Casal-Guisande,%20Manuel&rft.date=2024-11-02&rft.issn=0300-2896&rft.eissn=1579-2129&rft_id=info:doi/10.1016/j.arbres.2024.10.010&rft_dat=%3Cproquest_cross%3E3131851594%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3131851594&rft_id=info:pmid/39572361&rft_els_id=S0300289624004137&rfr_iscdi=true