A hybrid network for fiber orientation distribution reconstruction employing multi‐scale information

Background Accurate fiber orientation distribution (FOD) is crucial for resolving complex neural fiber structures. However, existing reconstruction methods often fail to integrate both global and local FOD information, as well as the directional information of fixels, which limits reconstruction acc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Medical physics (Lancaster) 2025-02, Vol.52 (2), p.1019-1036
Hauptverfasser: Yu, Hanyang, Ai, Lingmei, Yao, Ruoxia, Li, Jiahao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1036
container_issue 2
container_start_page 1019
container_title Medical physics (Lancaster)
container_volume 52
creator Yu, Hanyang
Ai, Lingmei
Yao, Ruoxia
Li, Jiahao
description Background Accurate fiber orientation distribution (FOD) is crucial for resolving complex neural fiber structures. However, existing reconstruction methods often fail to integrate both global and local FOD information, as well as the directional information of fixels, which limits reconstruction accuracy. Additionally, these methods overlook the spatial positional relationships between voxels, resulting in extracted features that lack continuity. In regions with signal distortion, many methods also exhibit issues with reconstruction artifacts. Purpose This study addresses these challenges by introducing a new neural network called Fusion‐Net. Methods Fusion‐Net comprises both the FOD reconstruction network and the peak direction estimation network. The FOD reconstruction network efficiently fuses the global and local features of the FOD, providing these features with spatial positional information through a competitive coordinate attention mechanism and a progressive updating mechanism, thus ensuring feature continuity. The peak direction estimation network redefines the task of estimating fixel peak directions as a multi‐class classification problem. It uses a direction‐aware loss function to supply directional information to the FOD reconstruction network. Additionally, we introduce a larger input scale for Fusion‐Net to compensate for local signal distortion by incorporating more global information. Results Experimental results demonstrate that the rich FOD features contribute to promising performance in Fusion‐Net. The network effectively utilizes these features to enhance reconstruction accuracy while incorporating more global information, effectively mitigating the issue of local signal distortion. Conclusions This study demonstrates the feasibility of Fusion‐Net for reconstructing FOD, providing reliable references for clinical applications.
doi_str_mv 10.1002/mp.17505
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3131500256</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3131500256</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2125-b509f1e83ee0b53d9eb087d50dddee266f9a457ebc941c11ef2dafa7231eb7ac3</originalsourceid><addsrcrecordid>eNp1kLlOxDAURS0EgmGR-AKUkibwbMfJpBwhNmkQFFBHXp7BkMTBTjSajk_gG_kSwgxLRfV0pfNOcQg5pHBCAdhp053QQoDYIBOWFTzNGJSbZAJQZinLQOyQ3RifASDnArbJDi9FLkqeT4idJU9LFZxJWuwXPrwk1ofEOoUh8cFh28ve-TYxLvbBqWE1AmrfjnvQq4lNV_ulax-TZqh79_H2HrWsMXHt6GpW__tky8o64sH33SMPF-f3Z1fp_Pby-mw2TzWjTKRKQGkpTjkiKMFNiQqmhRFgjEFkeW5LmYkClS4zqilFy4y0smCcoiqk5nvkeO3tgn8dMPZV46LGupYt-iFWnHIqxmIi_0N18DEGtFUXXCPDsqJQfVWtmq5aVR3Ro2_roBo0v-BPxhFI18DC1bj8V1Td3K2FnwHshJA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3131500256</pqid></control><display><type>article</type><title>A hybrid network for fiber orientation distribution reconstruction employing multi‐scale information</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Yu, Hanyang ; Ai, Lingmei ; Yao, Ruoxia ; Li, Jiahao</creator><creatorcontrib>Yu, Hanyang ; Ai, Lingmei ; Yao, Ruoxia ; Li, Jiahao</creatorcontrib><description>Background Accurate fiber orientation distribution (FOD) is crucial for resolving complex neural fiber structures. However, existing reconstruction methods often fail to integrate both global and local FOD information, as well as the directional information of fixels, which limits reconstruction accuracy. Additionally, these methods overlook the spatial positional relationships between voxels, resulting in extracted features that lack continuity. In regions with signal distortion, many methods also exhibit issues with reconstruction artifacts. Purpose This study addresses these challenges by introducing a new neural network called Fusion‐Net. Methods Fusion‐Net comprises both the FOD reconstruction network and the peak direction estimation network. The FOD reconstruction network efficiently fuses the global and local features of the FOD, providing these features with spatial positional information through a competitive coordinate attention mechanism and a progressive updating mechanism, thus ensuring feature continuity. The peak direction estimation network redefines the task of estimating fixel peak directions as a multi‐class classification problem. It uses a direction‐aware loss function to supply directional information to the FOD reconstruction network. Additionally, we introduce a larger input scale for Fusion‐Net to compensate for local signal distortion by incorporating more global information. Results Experimental results demonstrate that the rich FOD features contribute to promising performance in Fusion‐Net. The network effectively utilizes these features to enhance reconstruction accuracy while incorporating more global information, effectively mitigating the issue of local signal distortion. Conclusions This study demonstrates the feasibility of Fusion‐Net for reconstructing FOD, providing reliable references for clinical applications.</description><identifier>ISSN: 0094-2405</identifier><identifier>ISSN: 2473-4209</identifier><identifier>EISSN: 2473-4209</identifier><identifier>DOI: 10.1002/mp.17505</identifier><identifier>PMID: 39565936</identifier><language>eng</language><publisher>United States</publisher><subject>attention mechanism ; convolutional neural network ; fiber orientation distribution reconstruction ; Image Processing, Computer-Assisted - methods ; multi‐layer perceptron ; Neural Networks, Computer ; peak direction estimation</subject><ispartof>Medical physics (Lancaster), 2025-02, Vol.52 (2), p.1019-1036</ispartof><rights>2024 American Association of Physicists in Medicine.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2125-b509f1e83ee0b53d9eb087d50dddee266f9a457ebc941c11ef2dafa7231eb7ac3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmp.17505$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmp.17505$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39565936$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yu, Hanyang</creatorcontrib><creatorcontrib>Ai, Lingmei</creatorcontrib><creatorcontrib>Yao, Ruoxia</creatorcontrib><creatorcontrib>Li, Jiahao</creatorcontrib><title>A hybrid network for fiber orientation distribution reconstruction employing multi‐scale information</title><title>Medical physics (Lancaster)</title><addtitle>Med Phys</addtitle><description>Background Accurate fiber orientation distribution (FOD) is crucial for resolving complex neural fiber structures. However, existing reconstruction methods often fail to integrate both global and local FOD information, as well as the directional information of fixels, which limits reconstruction accuracy. Additionally, these methods overlook the spatial positional relationships between voxels, resulting in extracted features that lack continuity. In regions with signal distortion, many methods also exhibit issues with reconstruction artifacts. Purpose This study addresses these challenges by introducing a new neural network called Fusion‐Net. Methods Fusion‐Net comprises both the FOD reconstruction network and the peak direction estimation network. The FOD reconstruction network efficiently fuses the global and local features of the FOD, providing these features with spatial positional information through a competitive coordinate attention mechanism and a progressive updating mechanism, thus ensuring feature continuity. The peak direction estimation network redefines the task of estimating fixel peak directions as a multi‐class classification problem. It uses a direction‐aware loss function to supply directional information to the FOD reconstruction network. Additionally, we introduce a larger input scale for Fusion‐Net to compensate for local signal distortion by incorporating more global information. Results Experimental results demonstrate that the rich FOD features contribute to promising performance in Fusion‐Net. The network effectively utilizes these features to enhance reconstruction accuracy while incorporating more global information, effectively mitigating the issue of local signal distortion. Conclusions This study demonstrates the feasibility of Fusion‐Net for reconstructing FOD, providing reliable references for clinical applications.</description><subject>attention mechanism</subject><subject>convolutional neural network</subject><subject>fiber orientation distribution reconstruction</subject><subject>Image Processing, Computer-Assisted - methods</subject><subject>multi‐layer perceptron</subject><subject>Neural Networks, Computer</subject><subject>peak direction estimation</subject><issn>0094-2405</issn><issn>2473-4209</issn><issn>2473-4209</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kLlOxDAURS0EgmGR-AKUkibwbMfJpBwhNmkQFFBHXp7BkMTBTjSajk_gG_kSwgxLRfV0pfNOcQg5pHBCAdhp053QQoDYIBOWFTzNGJSbZAJQZinLQOyQ3RifASDnArbJDi9FLkqeT4idJU9LFZxJWuwXPrwk1ofEOoUh8cFh28ve-TYxLvbBqWE1AmrfjnvQq4lNV_ulax-TZqh79_H2HrWsMXHt6GpW__tky8o64sH33SMPF-f3Z1fp_Pby-mw2TzWjTKRKQGkpTjkiKMFNiQqmhRFgjEFkeW5LmYkClS4zqilFy4y0smCcoiqk5nvkeO3tgn8dMPZV46LGupYt-iFWnHIqxmIi_0N18DEGtFUXXCPDsqJQfVWtmq5aVR3Ro2_roBo0v-BPxhFI18DC1bj8V1Td3K2FnwHshJA</recordid><startdate>202502</startdate><enddate>202502</enddate><creator>Yu, Hanyang</creator><creator>Ai, Lingmei</creator><creator>Yao, Ruoxia</creator><creator>Li, Jiahao</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>202502</creationdate><title>A hybrid network for fiber orientation distribution reconstruction employing multi‐scale information</title><author>Yu, Hanyang ; Ai, Lingmei ; Yao, Ruoxia ; Li, Jiahao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2125-b509f1e83ee0b53d9eb087d50dddee266f9a457ebc941c11ef2dafa7231eb7ac3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>attention mechanism</topic><topic>convolutional neural network</topic><topic>fiber orientation distribution reconstruction</topic><topic>Image Processing, Computer-Assisted - methods</topic><topic>multi‐layer perceptron</topic><topic>Neural Networks, Computer</topic><topic>peak direction estimation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yu, Hanyang</creatorcontrib><creatorcontrib>Ai, Lingmei</creatorcontrib><creatorcontrib>Yao, Ruoxia</creatorcontrib><creatorcontrib>Li, Jiahao</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Medical physics (Lancaster)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yu, Hanyang</au><au>Ai, Lingmei</au><au>Yao, Ruoxia</au><au>Li, Jiahao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A hybrid network for fiber orientation distribution reconstruction employing multi‐scale information</atitle><jtitle>Medical physics (Lancaster)</jtitle><addtitle>Med Phys</addtitle><date>2025-02</date><risdate>2025</risdate><volume>52</volume><issue>2</issue><spage>1019</spage><epage>1036</epage><pages>1019-1036</pages><issn>0094-2405</issn><issn>2473-4209</issn><eissn>2473-4209</eissn><abstract>Background Accurate fiber orientation distribution (FOD) is crucial for resolving complex neural fiber structures. However, existing reconstruction methods often fail to integrate both global and local FOD information, as well as the directional information of fixels, which limits reconstruction accuracy. Additionally, these methods overlook the spatial positional relationships between voxels, resulting in extracted features that lack continuity. In regions with signal distortion, many methods also exhibit issues with reconstruction artifacts. Purpose This study addresses these challenges by introducing a new neural network called Fusion‐Net. Methods Fusion‐Net comprises both the FOD reconstruction network and the peak direction estimation network. The FOD reconstruction network efficiently fuses the global and local features of the FOD, providing these features with spatial positional information through a competitive coordinate attention mechanism and a progressive updating mechanism, thus ensuring feature continuity. The peak direction estimation network redefines the task of estimating fixel peak directions as a multi‐class classification problem. It uses a direction‐aware loss function to supply directional information to the FOD reconstruction network. Additionally, we introduce a larger input scale for Fusion‐Net to compensate for local signal distortion by incorporating more global information. Results Experimental results demonstrate that the rich FOD features contribute to promising performance in Fusion‐Net. The network effectively utilizes these features to enhance reconstruction accuracy while incorporating more global information, effectively mitigating the issue of local signal distortion. Conclusions This study demonstrates the feasibility of Fusion‐Net for reconstructing FOD, providing reliable references for clinical applications.</abstract><cop>United States</cop><pmid>39565936</pmid><doi>10.1002/mp.17505</doi><tpages>18</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0094-2405
ispartof Medical physics (Lancaster), 2025-02, Vol.52 (2), p.1019-1036
issn 0094-2405
2473-4209
2473-4209
language eng
recordid cdi_proquest_miscellaneous_3131500256
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects attention mechanism
convolutional neural network
fiber orientation distribution reconstruction
Image Processing, Computer-Assisted - methods
multi‐layer perceptron
Neural Networks, Computer
peak direction estimation
title A hybrid network for fiber orientation distribution reconstruction employing multi‐scale information
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T09%3A13%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20hybrid%20network%20for%20fiber%20orientation%20distribution%20reconstruction%20employing%20multi%E2%80%90scale%20information&rft.jtitle=Medical%20physics%20(Lancaster)&rft.au=Yu,%20Hanyang&rft.date=2025-02&rft.volume=52&rft.issue=2&rft.spage=1019&rft.epage=1036&rft.pages=1019-1036&rft.issn=0094-2405&rft.eissn=2473-4209&rft_id=info:doi/10.1002/mp.17505&rft_dat=%3Cproquest_cross%3E3131500256%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3131500256&rft_id=info:pmid/39565936&rfr_iscdi=true