Gelation and post-gelation mechanism of methylcellulose in an aqueous medium: 1H NMR and dynamic compressive rheological studies
Methylcellulose (MC) has become crucial in 3D bioprinting in the last decade. Researchers investigated MC aqueous solutions blended with biopolymers at room temperature, focusing on rheological studies. Even at low concentrations, the gel state of MC, which provides structural strength through hydro...
Gespeichert in:
Veröffentlicht in: | International journal of biological macromolecules 2024-12, Vol.283 (Pt 3), p.137725, Article 137725 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | Pt 3 |
container_start_page | 137725 |
container_title | International journal of biological macromolecules |
container_volume | 283 |
creator | Singh, Ratan Pal Sharma, Ashish Selim, Abdul Kundu, Patit Paban Jayamurugan, Govindasamy |
description | Methylcellulose (MC) has become crucial in 3D bioprinting in the last decade. Researchers investigated MC aqueous solutions blended with biopolymers at room temperature, focusing on rheological studies. Even at low concentrations, the gel state of MC, which provides structural strength through hydrophilic and hydrophobic associations, was explored for injection-based 3D printability. Post-gelation phenomena were examined at 80 °C using a dynamic mechanical analyzer (DMA), revealing increased storage and loss moduli with frequency, indicating a robust gel network structure. Optical microscopy reveals that upon heating from 40 to 80 °C, the structural strength is enhanced via the formation of hydrophobic confirmations, starting from the micro-helical structure to the associated microarray. These microarrays are further synchronized to withstand the high frequency of the DMA probe. Compressive rheology outcomes allow us to elaborate on the possibility of injection-based 3D printability of aqueous MC gel at 80 °C. 1H and 13C NMR studies probed hydrophobic interactions among MC chains, showing evidence of H-bonding through temperature-dependent shifts. UV/Vis experiments traced gel formation, depicting a time-dependent network formation process. Overall experiments indicated that adjusting temperature could control gelation time, allowing precise tuning of the printing process and achieving fine layers (10 μm) in the printed membrane with maximum hydrophobic clusters.
[Display omitted] |
doi_str_mv | 10.1016/j.ijbiomac.2024.137725 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3131498095</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0141813024085350</els_id><sourcerecordid>3131498095</sourcerecordid><originalsourceid>FETCH-LOGICAL-c222t-4cea6c94d2a72651de511c070b92cffa1460a12648af5d5c21bafd73816af2193</originalsourceid><addsrcrecordid>eNqFkElLBDEQhYMoOC5_QXL00mMqvXtSxA1cQPQcapJqJ0N3Z0y6hbn50007evZU1PIe9T7GTkDMQUBxtprb1cK6DvVcCpnNIS1Lme-wGVRlnQgh0l02E5BBUkEq9tlBCKs4LXKoZuzrllocrOs59oavXRiS979JR3qJvQ0dd01shuWm1dS2Y-sCcTspOH6M5MYQt8aO3TmHO_70-PLjZTY9dlZz7bq1pxDsJ3G_JNe6d6ux5WEYjaVwxPYabAMd_9ZD9nZz_Xp1lzw8395fXT4kWko5JJkmLHSdGYmljK8bygG0KMWilrppELJCIMgiq7DJTa4lLLAxZVpBgY2EOj1kp1vftXfx6TCozoYpDvZTApVCClldiTqPp8X2VHsXgqdGrb3t0G8UCDUhVyv1h1xNyNUWeRRebIUUg3xa8ipoS72OcDzpQRln_7P4Bv_Sj6E</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3131498095</pqid></control><display><type>article</type><title>Gelation and post-gelation mechanism of methylcellulose in an aqueous medium: 1H NMR and dynamic compressive rheological studies</title><source>Elsevier ScienceDirect Journals</source><creator>Singh, Ratan Pal ; Sharma, Ashish ; Selim, Abdul ; Kundu, Patit Paban ; Jayamurugan, Govindasamy</creator><creatorcontrib>Singh, Ratan Pal ; Sharma, Ashish ; Selim, Abdul ; Kundu, Patit Paban ; Jayamurugan, Govindasamy</creatorcontrib><description>Methylcellulose (MC) has become crucial in 3D bioprinting in the last decade. Researchers investigated MC aqueous solutions blended with biopolymers at room temperature, focusing on rheological studies. Even at low concentrations, the gel state of MC, which provides structural strength through hydrophilic and hydrophobic associations, was explored for injection-based 3D printability. Post-gelation phenomena were examined at 80 °C using a dynamic mechanical analyzer (DMA), revealing increased storage and loss moduli with frequency, indicating a robust gel network structure. Optical microscopy reveals that upon heating from 40 to 80 °C, the structural strength is enhanced via the formation of hydrophobic confirmations, starting from the micro-helical structure to the associated microarray. These microarrays are further synchronized to withstand the high frequency of the DMA probe. Compressive rheology outcomes allow us to elaborate on the possibility of injection-based 3D printability of aqueous MC gel at 80 °C. 1H and 13C NMR studies probed hydrophobic interactions among MC chains, showing evidence of H-bonding through temperature-dependent shifts. UV/Vis experiments traced gel formation, depicting a time-dependent network formation process. Overall experiments indicated that adjusting temperature could control gelation time, allowing precise tuning of the printing process and achieving fine layers (10 μm) in the printed membrane with maximum hydrophobic clusters.
[Display omitted]</description><identifier>ISSN: 0141-8130</identifier><identifier>ISSN: 1879-0003</identifier><identifier>EISSN: 1879-0003</identifier><identifier>DOI: 10.1016/j.ijbiomac.2024.137725</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>3D-printing ; Aqueous gels ; Gel kinetics ; Methylcellulose ; Post-gelation ; Rheology</subject><ispartof>International journal of biological macromolecules, 2024-12, Vol.283 (Pt 3), p.137725, Article 137725</ispartof><rights>2024 Elsevier B.V.</rights><rights>Copyright © 2024 Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c222t-4cea6c94d2a72651de511c070b92cffa1460a12648af5d5c21bafd73816af2193</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0141813024085350$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Singh, Ratan Pal</creatorcontrib><creatorcontrib>Sharma, Ashish</creatorcontrib><creatorcontrib>Selim, Abdul</creatorcontrib><creatorcontrib>Kundu, Patit Paban</creatorcontrib><creatorcontrib>Jayamurugan, Govindasamy</creatorcontrib><title>Gelation and post-gelation mechanism of methylcellulose in an aqueous medium: 1H NMR and dynamic compressive rheological studies</title><title>International journal of biological macromolecules</title><description>Methylcellulose (MC) has become crucial in 3D bioprinting in the last decade. Researchers investigated MC aqueous solutions blended with biopolymers at room temperature, focusing on rheological studies. Even at low concentrations, the gel state of MC, which provides structural strength through hydrophilic and hydrophobic associations, was explored for injection-based 3D printability. Post-gelation phenomena were examined at 80 °C using a dynamic mechanical analyzer (DMA), revealing increased storage and loss moduli with frequency, indicating a robust gel network structure. Optical microscopy reveals that upon heating from 40 to 80 °C, the structural strength is enhanced via the formation of hydrophobic confirmations, starting from the micro-helical structure to the associated microarray. These microarrays are further synchronized to withstand the high frequency of the DMA probe. Compressive rheology outcomes allow us to elaborate on the possibility of injection-based 3D printability of aqueous MC gel at 80 °C. 1H and 13C NMR studies probed hydrophobic interactions among MC chains, showing evidence of H-bonding through temperature-dependent shifts. UV/Vis experiments traced gel formation, depicting a time-dependent network formation process. Overall experiments indicated that adjusting temperature could control gelation time, allowing precise tuning of the printing process and achieving fine layers (10 μm) in the printed membrane with maximum hydrophobic clusters.
[Display omitted]</description><subject>3D-printing</subject><subject>Aqueous gels</subject><subject>Gel kinetics</subject><subject>Methylcellulose</subject><subject>Post-gelation</subject><subject>Rheology</subject><issn>0141-8130</issn><issn>1879-0003</issn><issn>1879-0003</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkElLBDEQhYMoOC5_QXL00mMqvXtSxA1cQPQcapJqJ0N3Z0y6hbn50007evZU1PIe9T7GTkDMQUBxtprb1cK6DvVcCpnNIS1Lme-wGVRlnQgh0l02E5BBUkEq9tlBCKs4LXKoZuzrllocrOs59oavXRiS979JR3qJvQ0dd01shuWm1dS2Y-sCcTspOH6M5MYQt8aO3TmHO_70-PLjZTY9dlZz7bq1pxDsJ3G_JNe6d6ux5WEYjaVwxPYabAMd_9ZD9nZz_Xp1lzw8395fXT4kWko5JJkmLHSdGYmljK8bygG0KMWilrppELJCIMgiq7DJTa4lLLAxZVpBgY2EOj1kp1vftXfx6TCozoYpDvZTApVCClldiTqPp8X2VHsXgqdGrb3t0G8UCDUhVyv1h1xNyNUWeRRebIUUg3xa8ipoS72OcDzpQRln_7P4Bv_Sj6E</recordid><startdate>202412</startdate><enddate>202412</enddate><creator>Singh, Ratan Pal</creator><creator>Sharma, Ashish</creator><creator>Selim, Abdul</creator><creator>Kundu, Patit Paban</creator><creator>Jayamurugan, Govindasamy</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>202412</creationdate><title>Gelation and post-gelation mechanism of methylcellulose in an aqueous medium: 1H NMR and dynamic compressive rheological studies</title><author>Singh, Ratan Pal ; Sharma, Ashish ; Selim, Abdul ; Kundu, Patit Paban ; Jayamurugan, Govindasamy</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c222t-4cea6c94d2a72651de511c070b92cffa1460a12648af5d5c21bafd73816af2193</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>3D-printing</topic><topic>Aqueous gels</topic><topic>Gel kinetics</topic><topic>Methylcellulose</topic><topic>Post-gelation</topic><topic>Rheology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Singh, Ratan Pal</creatorcontrib><creatorcontrib>Sharma, Ashish</creatorcontrib><creatorcontrib>Selim, Abdul</creatorcontrib><creatorcontrib>Kundu, Patit Paban</creatorcontrib><creatorcontrib>Jayamurugan, Govindasamy</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>International journal of biological macromolecules</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Singh, Ratan Pal</au><au>Sharma, Ashish</au><au>Selim, Abdul</au><au>Kundu, Patit Paban</au><au>Jayamurugan, Govindasamy</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Gelation and post-gelation mechanism of methylcellulose in an aqueous medium: 1H NMR and dynamic compressive rheological studies</atitle><jtitle>International journal of biological macromolecules</jtitle><date>2024-12</date><risdate>2024</risdate><volume>283</volume><issue>Pt 3</issue><spage>137725</spage><pages>137725-</pages><artnum>137725</artnum><issn>0141-8130</issn><issn>1879-0003</issn><eissn>1879-0003</eissn><abstract>Methylcellulose (MC) has become crucial in 3D bioprinting in the last decade. Researchers investigated MC aqueous solutions blended with biopolymers at room temperature, focusing on rheological studies. Even at low concentrations, the gel state of MC, which provides structural strength through hydrophilic and hydrophobic associations, was explored for injection-based 3D printability. Post-gelation phenomena were examined at 80 °C using a dynamic mechanical analyzer (DMA), revealing increased storage and loss moduli with frequency, indicating a robust gel network structure. Optical microscopy reveals that upon heating from 40 to 80 °C, the structural strength is enhanced via the formation of hydrophobic confirmations, starting from the micro-helical structure to the associated microarray. These microarrays are further synchronized to withstand the high frequency of the DMA probe. Compressive rheology outcomes allow us to elaborate on the possibility of injection-based 3D printability of aqueous MC gel at 80 °C. 1H and 13C NMR studies probed hydrophobic interactions among MC chains, showing evidence of H-bonding through temperature-dependent shifts. UV/Vis experiments traced gel formation, depicting a time-dependent network formation process. Overall experiments indicated that adjusting temperature could control gelation time, allowing precise tuning of the printing process and achieving fine layers (10 μm) in the printed membrane with maximum hydrophobic clusters.
[Display omitted]</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.ijbiomac.2024.137725</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0141-8130 |
ispartof | International journal of biological macromolecules, 2024-12, Vol.283 (Pt 3), p.137725, Article 137725 |
issn | 0141-8130 1879-0003 1879-0003 |
language | eng |
recordid | cdi_proquest_miscellaneous_3131498095 |
source | Elsevier ScienceDirect Journals |
subjects | 3D-printing Aqueous gels Gel kinetics Methylcellulose Post-gelation Rheology |
title | Gelation and post-gelation mechanism of methylcellulose in an aqueous medium: 1H NMR and dynamic compressive rheological studies |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T01%3A31%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Gelation%20and%20post-gelation%20mechanism%20of%20methylcellulose%20in%20an%20aqueous%20medium:%201H%20NMR%20and%20dynamic%20compressive%20rheological%20studies&rft.jtitle=International%20journal%20of%20biological%20macromolecules&rft.au=Singh,%20Ratan%20Pal&rft.date=2024-12&rft.volume=283&rft.issue=Pt%203&rft.spage=137725&rft.pages=137725-&rft.artnum=137725&rft.issn=0141-8130&rft.eissn=1879-0003&rft_id=info:doi/10.1016/j.ijbiomac.2024.137725&rft_dat=%3Cproquest_cross%3E3131498095%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3131498095&rft_id=info:pmid/&rft_els_id=S0141813024085350&rfr_iscdi=true |