Simultaneous prediction of the API concentration and mass gain of film coated tablets using Near-Infrared and Raman spectroscopy and data fusion
[Display omitted] •PLS models using NIR and Raman spectroscopy were evaluated for predicting API concentration and mass gain during film coating.•The study explored data fusion techniques (low-, mid-, and high-level) to improve the accuracy of these predictions.•Transmission spectroscopy models exce...
Gespeichert in:
Veröffentlicht in: | International journal of pharmaceutics 2025-01, Vol.668, p.124957, Article 124957 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 124957 |
container_title | International journal of pharmaceutics |
container_volume | 668 |
creator | Szabó-Szőcs, Bence Ficzere, Máté Péterfi, Orsolya Galata, Dorián László |
description | [Display omitted]
•PLS models using NIR and Raman spectroscopy were evaluated for predicting API concentration and mass gain during film coating.•The study explored data fusion techniques (low-, mid-, and high-level) to improve the accuracy of these predictions.•Transmission spectroscopy models excelled at predicting API concentration by capturing detailed information from the entire tablet.•Reflection spectroscopy models were most effective for mass gain prediction, emphasizing the tablet’s surface layer.•Data fusion strategies significantly enhanced prediction accuracy, with mid-level fusion yielding the most robust results.
This study investigates the simultaneous prediction of active pharmaceutical ingredient (API) concentration and mass gain in film-coated tablets using Partial Least Squares (PLS) regression combined with three data fusion (DF) techniques: Low-Level (LLDF), Mid-Level (MLDF), and High-Level (HLDF). Near-Infrared (NIR) and Raman spectroscopy were utilized in both reflection and transmission modes, providing four types of spectral data per tablet. Transmission models proved more effective for API prediction by capturing data from the entire tablet, while reflection models excelled in assessing mass gain by focusing on the surface layer. Among the DF strategies, MLDF with Principal Component Analysis (PCA) offered the most significant improvements in predictive accuracy by filtering out irrelevant information. Variable selection methods further enhanced model performance by reducing the number of latent variables required. Overall, the integration of multiple spectral datasets and DF techniques resulted in models that gave predictions for evaluation samples with lower errors, demonstrating their potential to optimize quality control in pharmaceutical manufacturing. |
doi_str_mv | 10.1016/j.ijpharm.2024.124957 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3130207345</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0378517324011918</els_id><sourcerecordid>3130207345</sourcerecordid><originalsourceid>FETCH-LOGICAL-c290t-3b636621ce2549af6158d8148423904014663d714a2ed580c2a6141bf5ec5d1e3</originalsourceid><addsrcrecordid>eNqFkctuFDEQRS0EIkPgE0BesunBz3b3CkURj5EiEgVYWzV2deJRv7DdSPmLfDLO9MCWVUmuc6tc9xLylrMtZ7z-cNiGw3wPcdgKJtSWC9Vq84xseGNkJZWpn5MNk6apNDfyjLxK6cAYqwWXL8mZbLU23DQb8vg9DEufYcRpSXSO6IPLYRrp1NF8j_TiZkfdNDocc4RjA0ZPB0iJ3kE4Yl3oh8JARk8z7HvMiS4pjHf0G0KsdmMXocw9Cm9hgJGmGV2OU3LT_HB89pCBdkU0ja_Jiw76hG9O9Zz8_Pzpx-XX6ur6y-7y4qpyomW5kvta1uUah0KrFrqa68Y3XDVKyJYpxlVdS2-4AoFeN8wJqLni-06j056jPCfv17lznH4tmLIdQnLY96sVVnLJBDNS6YLqFXXlzyliZ-cYBogPljP7FIY92FMY9ikMu4ZRdO9OK5b9gP6f6q_7Bfi4AlgO_R0w2uQCFrN9iMUh66fwnxV_AFdInqg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3130207345</pqid></control><display><type>article</type><title>Simultaneous prediction of the API concentration and mass gain of film coated tablets using Near-Infrared and Raman spectroscopy and data fusion</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Szabó-Szőcs, Bence ; Ficzere, Máté ; Péterfi, Orsolya ; Galata, Dorián László</creator><creatorcontrib>Szabó-Szőcs, Bence ; Ficzere, Máté ; Péterfi, Orsolya ; Galata, Dorián László</creatorcontrib><description>[Display omitted]
•PLS models using NIR and Raman spectroscopy were evaluated for predicting API concentration and mass gain during film coating.•The study explored data fusion techniques (low-, mid-, and high-level) to improve the accuracy of these predictions.•Transmission spectroscopy models excelled at predicting API concentration by capturing detailed information from the entire tablet.•Reflection spectroscopy models were most effective for mass gain prediction, emphasizing the tablet’s surface layer.•Data fusion strategies significantly enhanced prediction accuracy, with mid-level fusion yielding the most robust results.
This study investigates the simultaneous prediction of active pharmaceutical ingredient (API) concentration and mass gain in film-coated tablets using Partial Least Squares (PLS) regression combined with three data fusion (DF) techniques: Low-Level (LLDF), Mid-Level (MLDF), and High-Level (HLDF). Near-Infrared (NIR) and Raman spectroscopy were utilized in both reflection and transmission modes, providing four types of spectral data per tablet. Transmission models proved more effective for API prediction by capturing data from the entire tablet, while reflection models excelled in assessing mass gain by focusing on the surface layer. Among the DF strategies, MLDF with Principal Component Analysis (PCA) offered the most significant improvements in predictive accuracy by filtering out irrelevant information. Variable selection methods further enhanced model performance by reducing the number of latent variables required. Overall, the integration of multiple spectral datasets and DF techniques resulted in models that gave predictions for evaluation samples with lower errors, demonstrating their potential to optimize quality control in pharmaceutical manufacturing.</description><identifier>ISSN: 0378-5173</identifier><identifier>ISSN: 1873-3476</identifier><identifier>EISSN: 1873-3476</identifier><identifier>DOI: 10.1016/j.ijpharm.2024.124957</identifier><identifier>PMID: 39557178</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Chemistry, Pharmaceutical - methods ; Chemometrics ; Data fusion ; Excipients - chemistry ; Film coating ; Least-Squares Analysis ; NIR spectroscopy ; PAT ; Pharmaceutical Preparations - chemistry ; Principal Component Analysis ; Quality Control ; Raman spectroscopy ; Spectroscopy, Near-Infrared - methods ; Spectrum Analysis, Raman - methods ; Tableting ; Tablets - chemistry ; Tablets, Enteric-Coated - chemistry</subject><ispartof>International journal of pharmaceutics, 2025-01, Vol.668, p.124957, Article 124957</ispartof><rights>2024 The Author(s)</rights><rights>Copyright © 2024 The Author(s). Published by Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c290t-3b636621ce2549af6158d8148423904014663d714a2ed580c2a6141bf5ec5d1e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0378517324011918$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39557178$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Szabó-Szőcs, Bence</creatorcontrib><creatorcontrib>Ficzere, Máté</creatorcontrib><creatorcontrib>Péterfi, Orsolya</creatorcontrib><creatorcontrib>Galata, Dorián László</creatorcontrib><title>Simultaneous prediction of the API concentration and mass gain of film coated tablets using Near-Infrared and Raman spectroscopy and data fusion</title><title>International journal of pharmaceutics</title><addtitle>Int J Pharm</addtitle><description>[Display omitted]
•PLS models using NIR and Raman spectroscopy were evaluated for predicting API concentration and mass gain during film coating.•The study explored data fusion techniques (low-, mid-, and high-level) to improve the accuracy of these predictions.•Transmission spectroscopy models excelled at predicting API concentration by capturing detailed information from the entire tablet.•Reflection spectroscopy models were most effective for mass gain prediction, emphasizing the tablet’s surface layer.•Data fusion strategies significantly enhanced prediction accuracy, with mid-level fusion yielding the most robust results.
This study investigates the simultaneous prediction of active pharmaceutical ingredient (API) concentration and mass gain in film-coated tablets using Partial Least Squares (PLS) regression combined with three data fusion (DF) techniques: Low-Level (LLDF), Mid-Level (MLDF), and High-Level (HLDF). Near-Infrared (NIR) and Raman spectroscopy were utilized in both reflection and transmission modes, providing four types of spectral data per tablet. Transmission models proved more effective for API prediction by capturing data from the entire tablet, while reflection models excelled in assessing mass gain by focusing on the surface layer. Among the DF strategies, MLDF with Principal Component Analysis (PCA) offered the most significant improvements in predictive accuracy by filtering out irrelevant information. Variable selection methods further enhanced model performance by reducing the number of latent variables required. Overall, the integration of multiple spectral datasets and DF techniques resulted in models that gave predictions for evaluation samples with lower errors, demonstrating their potential to optimize quality control in pharmaceutical manufacturing.</description><subject>Chemistry, Pharmaceutical - methods</subject><subject>Chemometrics</subject><subject>Data fusion</subject><subject>Excipients - chemistry</subject><subject>Film coating</subject><subject>Least-Squares Analysis</subject><subject>NIR spectroscopy</subject><subject>PAT</subject><subject>Pharmaceutical Preparations - chemistry</subject><subject>Principal Component Analysis</subject><subject>Quality Control</subject><subject>Raman spectroscopy</subject><subject>Spectroscopy, Near-Infrared - methods</subject><subject>Spectrum Analysis, Raman - methods</subject><subject>Tableting</subject><subject>Tablets - chemistry</subject><subject>Tablets, Enteric-Coated - chemistry</subject><issn>0378-5173</issn><issn>1873-3476</issn><issn>1873-3476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkctuFDEQRS0EIkPgE0BesunBz3b3CkURj5EiEgVYWzV2deJRv7DdSPmLfDLO9MCWVUmuc6tc9xLylrMtZ7z-cNiGw3wPcdgKJtSWC9Vq84xseGNkJZWpn5MNk6apNDfyjLxK6cAYqwWXL8mZbLU23DQb8vg9DEufYcRpSXSO6IPLYRrp1NF8j_TiZkfdNDocc4RjA0ZPB0iJ3kE4Yl3oh8JARk8z7HvMiS4pjHf0G0KsdmMXocw9Cm9hgJGmGV2OU3LT_HB89pCBdkU0ja_Jiw76hG9O9Zz8_Pzpx-XX6ur6y-7y4qpyomW5kvta1uUah0KrFrqa68Y3XDVKyJYpxlVdS2-4AoFeN8wJqLni-06j056jPCfv17lznH4tmLIdQnLY96sVVnLJBDNS6YLqFXXlzyliZ-cYBogPljP7FIY92FMY9ikMu4ZRdO9OK5b9gP6f6q_7Bfi4AlgO_R0w2uQCFrN9iMUh66fwnxV_AFdInqg</recordid><startdate>20250105</startdate><enddate>20250105</enddate><creator>Szabó-Szőcs, Bence</creator><creator>Ficzere, Máté</creator><creator>Péterfi, Orsolya</creator><creator>Galata, Dorián László</creator><general>Elsevier B.V</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20250105</creationdate><title>Simultaneous prediction of the API concentration and mass gain of film coated tablets using Near-Infrared and Raman spectroscopy and data fusion</title><author>Szabó-Szőcs, Bence ; Ficzere, Máté ; Péterfi, Orsolya ; Galata, Dorián László</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c290t-3b636621ce2549af6158d8148423904014663d714a2ed580c2a6141bf5ec5d1e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>Chemistry, Pharmaceutical - methods</topic><topic>Chemometrics</topic><topic>Data fusion</topic><topic>Excipients - chemistry</topic><topic>Film coating</topic><topic>Least-Squares Analysis</topic><topic>NIR spectroscopy</topic><topic>PAT</topic><topic>Pharmaceutical Preparations - chemistry</topic><topic>Principal Component Analysis</topic><topic>Quality Control</topic><topic>Raman spectroscopy</topic><topic>Spectroscopy, Near-Infrared - methods</topic><topic>Spectrum Analysis, Raman - methods</topic><topic>Tableting</topic><topic>Tablets - chemistry</topic><topic>Tablets, Enteric-Coated - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Szabó-Szőcs, Bence</creatorcontrib><creatorcontrib>Ficzere, Máté</creatorcontrib><creatorcontrib>Péterfi, Orsolya</creatorcontrib><creatorcontrib>Galata, Dorián László</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>International journal of pharmaceutics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Szabó-Szőcs, Bence</au><au>Ficzere, Máté</au><au>Péterfi, Orsolya</au><au>Galata, Dorián László</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Simultaneous prediction of the API concentration and mass gain of film coated tablets using Near-Infrared and Raman spectroscopy and data fusion</atitle><jtitle>International journal of pharmaceutics</jtitle><addtitle>Int J Pharm</addtitle><date>2025-01-05</date><risdate>2025</risdate><volume>668</volume><spage>124957</spage><pages>124957-</pages><artnum>124957</artnum><issn>0378-5173</issn><issn>1873-3476</issn><eissn>1873-3476</eissn><abstract>[Display omitted]
•PLS models using NIR and Raman spectroscopy were evaluated for predicting API concentration and mass gain during film coating.•The study explored data fusion techniques (low-, mid-, and high-level) to improve the accuracy of these predictions.•Transmission spectroscopy models excelled at predicting API concentration by capturing detailed information from the entire tablet.•Reflection spectroscopy models were most effective for mass gain prediction, emphasizing the tablet’s surface layer.•Data fusion strategies significantly enhanced prediction accuracy, with mid-level fusion yielding the most robust results.
This study investigates the simultaneous prediction of active pharmaceutical ingredient (API) concentration and mass gain in film-coated tablets using Partial Least Squares (PLS) regression combined with three data fusion (DF) techniques: Low-Level (LLDF), Mid-Level (MLDF), and High-Level (HLDF). Near-Infrared (NIR) and Raman spectroscopy were utilized in both reflection and transmission modes, providing four types of spectral data per tablet. Transmission models proved more effective for API prediction by capturing data from the entire tablet, while reflection models excelled in assessing mass gain by focusing on the surface layer. Among the DF strategies, MLDF with Principal Component Analysis (PCA) offered the most significant improvements in predictive accuracy by filtering out irrelevant information. Variable selection methods further enhanced model performance by reducing the number of latent variables required. Overall, the integration of multiple spectral datasets and DF techniques resulted in models that gave predictions for evaluation samples with lower errors, demonstrating their potential to optimize quality control in pharmaceutical manufacturing.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>39557178</pmid><doi>10.1016/j.ijpharm.2024.124957</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0378-5173 |
ispartof | International journal of pharmaceutics, 2025-01, Vol.668, p.124957, Article 124957 |
issn | 0378-5173 1873-3476 1873-3476 |
language | eng |
recordid | cdi_proquest_miscellaneous_3130207345 |
source | MEDLINE; Elsevier ScienceDirect Journals |
subjects | Chemistry, Pharmaceutical - methods Chemometrics Data fusion Excipients - chemistry Film coating Least-Squares Analysis NIR spectroscopy PAT Pharmaceutical Preparations - chemistry Principal Component Analysis Quality Control Raman spectroscopy Spectroscopy, Near-Infrared - methods Spectrum Analysis, Raman - methods Tableting Tablets - chemistry Tablets, Enteric-Coated - chemistry |
title | Simultaneous prediction of the API concentration and mass gain of film coated tablets using Near-Infrared and Raman spectroscopy and data fusion |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T03%3A57%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Simultaneous%20prediction%20of%20the%20API%20concentration%20and%20mass%20gain%20of%20film%20coated%20tablets%20using%20Near-Infrared%20and%20Raman%20spectroscopy%20and%20data%20fusion&rft.jtitle=International%20journal%20of%20pharmaceutics&rft.au=Szab%C3%B3-Sz%C5%91cs,%20Bence&rft.date=2025-01-05&rft.volume=668&rft.spage=124957&rft.pages=124957-&rft.artnum=124957&rft.issn=0378-5173&rft.eissn=1873-3476&rft_id=info:doi/10.1016/j.ijpharm.2024.124957&rft_dat=%3Cproquest_cross%3E3130207345%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3130207345&rft_id=info:pmid/39557178&rft_els_id=S0378517324011918&rfr_iscdi=true |