Simultaneous prediction of the API concentration and mass gain of film coated tablets using Near-Infrared and Raman spectroscopy and data fusion

[Display omitted] •PLS models using NIR and Raman spectroscopy were evaluated for predicting API concentration and mass gain during film coating.•The study explored data fusion techniques (low-, mid-, and high-level) to improve the accuracy of these predictions.•Transmission spectroscopy models exce...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of pharmaceutics 2025-01, Vol.668, p.124957, Article 124957
Hauptverfasser: Szabó-Szőcs, Bence, Ficzere, Máté, Péterfi, Orsolya, Galata, Dorián László
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 124957
container_title International journal of pharmaceutics
container_volume 668
creator Szabó-Szőcs, Bence
Ficzere, Máté
Péterfi, Orsolya
Galata, Dorián László
description [Display omitted] •PLS models using NIR and Raman spectroscopy were evaluated for predicting API concentration and mass gain during film coating.•The study explored data fusion techniques (low-, mid-, and high-level) to improve the accuracy of these predictions.•Transmission spectroscopy models excelled at predicting API concentration by capturing detailed information from the entire tablet.•Reflection spectroscopy models were most effective for mass gain prediction, emphasizing the tablet’s surface layer.•Data fusion strategies significantly enhanced prediction accuracy, with mid-level fusion yielding the most robust results. This study investigates the simultaneous prediction of active pharmaceutical ingredient (API) concentration and mass gain in film-coated tablets using Partial Least Squares (PLS) regression combined with three data fusion (DF) techniques: Low-Level (LLDF), Mid-Level (MLDF), and High-Level (HLDF). Near-Infrared (NIR) and Raman spectroscopy were utilized in both reflection and transmission modes, providing four types of spectral data per tablet. Transmission models proved more effective for API prediction by capturing data from the entire tablet, while reflection models excelled in assessing mass gain by focusing on the surface layer. Among the DF strategies, MLDF with Principal Component Analysis (PCA) offered the most significant improvements in predictive accuracy by filtering out irrelevant information. Variable selection methods further enhanced model performance by reducing the number of latent variables required. Overall, the integration of multiple spectral datasets and DF techniques resulted in models that gave predictions for evaluation samples with lower errors, demonstrating their potential to optimize quality control in pharmaceutical manufacturing.
doi_str_mv 10.1016/j.ijpharm.2024.124957
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3130207345</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0378517324011918</els_id><sourcerecordid>3130207345</sourcerecordid><originalsourceid>FETCH-LOGICAL-c290t-3b636621ce2549af6158d8148423904014663d714a2ed580c2a6141bf5ec5d1e3</originalsourceid><addsrcrecordid>eNqFkctuFDEQRS0EIkPgE0BesunBz3b3CkURj5EiEgVYWzV2deJRv7DdSPmLfDLO9MCWVUmuc6tc9xLylrMtZ7z-cNiGw3wPcdgKJtSWC9Vq84xseGNkJZWpn5MNk6apNDfyjLxK6cAYqwWXL8mZbLU23DQb8vg9DEufYcRpSXSO6IPLYRrp1NF8j_TiZkfdNDocc4RjA0ZPB0iJ3kE4Yl3oh8JARk8z7HvMiS4pjHf0G0KsdmMXocw9Cm9hgJGmGV2OU3LT_HB89pCBdkU0ja_Jiw76hG9O9Zz8_Pzpx-XX6ur6y-7y4qpyomW5kvta1uUah0KrFrqa68Y3XDVKyJYpxlVdS2-4AoFeN8wJqLni-06j056jPCfv17lznH4tmLIdQnLY96sVVnLJBDNS6YLqFXXlzyliZ-cYBogPljP7FIY92FMY9ikMu4ZRdO9OK5b9gP6f6q_7Bfi4AlgO_R0w2uQCFrN9iMUh66fwnxV_AFdInqg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3130207345</pqid></control><display><type>article</type><title>Simultaneous prediction of the API concentration and mass gain of film coated tablets using Near-Infrared and Raman spectroscopy and data fusion</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Szabó-Szőcs, Bence ; Ficzere, Máté ; Péterfi, Orsolya ; Galata, Dorián László</creator><creatorcontrib>Szabó-Szőcs, Bence ; Ficzere, Máté ; Péterfi, Orsolya ; Galata, Dorián László</creatorcontrib><description>[Display omitted] •PLS models using NIR and Raman spectroscopy were evaluated for predicting API concentration and mass gain during film coating.•The study explored data fusion techniques (low-, mid-, and high-level) to improve the accuracy of these predictions.•Transmission spectroscopy models excelled at predicting API concentration by capturing detailed information from the entire tablet.•Reflection spectroscopy models were most effective for mass gain prediction, emphasizing the tablet’s surface layer.•Data fusion strategies significantly enhanced prediction accuracy, with mid-level fusion yielding the most robust results. This study investigates the simultaneous prediction of active pharmaceutical ingredient (API) concentration and mass gain in film-coated tablets using Partial Least Squares (PLS) regression combined with three data fusion (DF) techniques: Low-Level (LLDF), Mid-Level (MLDF), and High-Level (HLDF). Near-Infrared (NIR) and Raman spectroscopy were utilized in both reflection and transmission modes, providing four types of spectral data per tablet. Transmission models proved more effective for API prediction by capturing data from the entire tablet, while reflection models excelled in assessing mass gain by focusing on the surface layer. Among the DF strategies, MLDF with Principal Component Analysis (PCA) offered the most significant improvements in predictive accuracy by filtering out irrelevant information. Variable selection methods further enhanced model performance by reducing the number of latent variables required. Overall, the integration of multiple spectral datasets and DF techniques resulted in models that gave predictions for evaluation samples with lower errors, demonstrating their potential to optimize quality control in pharmaceutical manufacturing.</description><identifier>ISSN: 0378-5173</identifier><identifier>ISSN: 1873-3476</identifier><identifier>EISSN: 1873-3476</identifier><identifier>DOI: 10.1016/j.ijpharm.2024.124957</identifier><identifier>PMID: 39557178</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Chemistry, Pharmaceutical - methods ; Chemometrics ; Data fusion ; Excipients - chemistry ; Film coating ; Least-Squares Analysis ; NIR spectroscopy ; PAT ; Pharmaceutical Preparations - chemistry ; Principal Component Analysis ; Quality Control ; Raman spectroscopy ; Spectroscopy, Near-Infrared - methods ; Spectrum Analysis, Raman - methods ; Tableting ; Tablets - chemistry ; Tablets, Enteric-Coated - chemistry</subject><ispartof>International journal of pharmaceutics, 2025-01, Vol.668, p.124957, Article 124957</ispartof><rights>2024 The Author(s)</rights><rights>Copyright © 2024 The Author(s). Published by Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c290t-3b636621ce2549af6158d8148423904014663d714a2ed580c2a6141bf5ec5d1e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0378517324011918$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39557178$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Szabó-Szőcs, Bence</creatorcontrib><creatorcontrib>Ficzere, Máté</creatorcontrib><creatorcontrib>Péterfi, Orsolya</creatorcontrib><creatorcontrib>Galata, Dorián László</creatorcontrib><title>Simultaneous prediction of the API concentration and mass gain of film coated tablets using Near-Infrared and Raman spectroscopy and data fusion</title><title>International journal of pharmaceutics</title><addtitle>Int J Pharm</addtitle><description>[Display omitted] •PLS models using NIR and Raman spectroscopy were evaluated for predicting API concentration and mass gain during film coating.•The study explored data fusion techniques (low-, mid-, and high-level) to improve the accuracy of these predictions.•Transmission spectroscopy models excelled at predicting API concentration by capturing detailed information from the entire tablet.•Reflection spectroscopy models were most effective for mass gain prediction, emphasizing the tablet’s surface layer.•Data fusion strategies significantly enhanced prediction accuracy, with mid-level fusion yielding the most robust results. This study investigates the simultaneous prediction of active pharmaceutical ingredient (API) concentration and mass gain in film-coated tablets using Partial Least Squares (PLS) regression combined with three data fusion (DF) techniques: Low-Level (LLDF), Mid-Level (MLDF), and High-Level (HLDF). Near-Infrared (NIR) and Raman spectroscopy were utilized in both reflection and transmission modes, providing four types of spectral data per tablet. Transmission models proved more effective for API prediction by capturing data from the entire tablet, while reflection models excelled in assessing mass gain by focusing on the surface layer. Among the DF strategies, MLDF with Principal Component Analysis (PCA) offered the most significant improvements in predictive accuracy by filtering out irrelevant information. Variable selection methods further enhanced model performance by reducing the number of latent variables required. Overall, the integration of multiple spectral datasets and DF techniques resulted in models that gave predictions for evaluation samples with lower errors, demonstrating their potential to optimize quality control in pharmaceutical manufacturing.</description><subject>Chemistry, Pharmaceutical - methods</subject><subject>Chemometrics</subject><subject>Data fusion</subject><subject>Excipients - chemistry</subject><subject>Film coating</subject><subject>Least-Squares Analysis</subject><subject>NIR spectroscopy</subject><subject>PAT</subject><subject>Pharmaceutical Preparations - chemistry</subject><subject>Principal Component Analysis</subject><subject>Quality Control</subject><subject>Raman spectroscopy</subject><subject>Spectroscopy, Near-Infrared - methods</subject><subject>Spectrum Analysis, Raman - methods</subject><subject>Tableting</subject><subject>Tablets - chemistry</subject><subject>Tablets, Enteric-Coated - chemistry</subject><issn>0378-5173</issn><issn>1873-3476</issn><issn>1873-3476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkctuFDEQRS0EIkPgE0BesunBz3b3CkURj5EiEgVYWzV2deJRv7DdSPmLfDLO9MCWVUmuc6tc9xLylrMtZ7z-cNiGw3wPcdgKJtSWC9Vq84xseGNkJZWpn5MNk6apNDfyjLxK6cAYqwWXL8mZbLU23DQb8vg9DEufYcRpSXSO6IPLYRrp1NF8j_TiZkfdNDocc4RjA0ZPB0iJ3kE4Yl3oh8JARk8z7HvMiS4pjHf0G0KsdmMXocw9Cm9hgJGmGV2OU3LT_HB89pCBdkU0ja_Jiw76hG9O9Zz8_Pzpx-XX6ur6y-7y4qpyomW5kvta1uUah0KrFrqa68Y3XDVKyJYpxlVdS2-4AoFeN8wJqLni-06j056jPCfv17lznH4tmLIdQnLY96sVVnLJBDNS6YLqFXXlzyliZ-cYBogPljP7FIY92FMY9ikMu4ZRdO9OK5b9gP6f6q_7Bfi4AlgO_R0w2uQCFrN9iMUh66fwnxV_AFdInqg</recordid><startdate>20250105</startdate><enddate>20250105</enddate><creator>Szabó-Szőcs, Bence</creator><creator>Ficzere, Máté</creator><creator>Péterfi, Orsolya</creator><creator>Galata, Dorián László</creator><general>Elsevier B.V</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20250105</creationdate><title>Simultaneous prediction of the API concentration and mass gain of film coated tablets using Near-Infrared and Raman spectroscopy and data fusion</title><author>Szabó-Szőcs, Bence ; Ficzere, Máté ; Péterfi, Orsolya ; Galata, Dorián László</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c290t-3b636621ce2549af6158d8148423904014663d714a2ed580c2a6141bf5ec5d1e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>Chemistry, Pharmaceutical - methods</topic><topic>Chemometrics</topic><topic>Data fusion</topic><topic>Excipients - chemistry</topic><topic>Film coating</topic><topic>Least-Squares Analysis</topic><topic>NIR spectroscopy</topic><topic>PAT</topic><topic>Pharmaceutical Preparations - chemistry</topic><topic>Principal Component Analysis</topic><topic>Quality Control</topic><topic>Raman spectroscopy</topic><topic>Spectroscopy, Near-Infrared - methods</topic><topic>Spectrum Analysis, Raman - methods</topic><topic>Tableting</topic><topic>Tablets - chemistry</topic><topic>Tablets, Enteric-Coated - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Szabó-Szőcs, Bence</creatorcontrib><creatorcontrib>Ficzere, Máté</creatorcontrib><creatorcontrib>Péterfi, Orsolya</creatorcontrib><creatorcontrib>Galata, Dorián László</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>International journal of pharmaceutics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Szabó-Szőcs, Bence</au><au>Ficzere, Máté</au><au>Péterfi, Orsolya</au><au>Galata, Dorián László</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Simultaneous prediction of the API concentration and mass gain of film coated tablets using Near-Infrared and Raman spectroscopy and data fusion</atitle><jtitle>International journal of pharmaceutics</jtitle><addtitle>Int J Pharm</addtitle><date>2025-01-05</date><risdate>2025</risdate><volume>668</volume><spage>124957</spage><pages>124957-</pages><artnum>124957</artnum><issn>0378-5173</issn><issn>1873-3476</issn><eissn>1873-3476</eissn><abstract>[Display omitted] •PLS models using NIR and Raman spectroscopy were evaluated for predicting API concentration and mass gain during film coating.•The study explored data fusion techniques (low-, mid-, and high-level) to improve the accuracy of these predictions.•Transmission spectroscopy models excelled at predicting API concentration by capturing detailed information from the entire tablet.•Reflection spectroscopy models were most effective for mass gain prediction, emphasizing the tablet’s surface layer.•Data fusion strategies significantly enhanced prediction accuracy, with mid-level fusion yielding the most robust results. This study investigates the simultaneous prediction of active pharmaceutical ingredient (API) concentration and mass gain in film-coated tablets using Partial Least Squares (PLS) regression combined with three data fusion (DF) techniques: Low-Level (LLDF), Mid-Level (MLDF), and High-Level (HLDF). Near-Infrared (NIR) and Raman spectroscopy were utilized in both reflection and transmission modes, providing four types of spectral data per tablet. Transmission models proved more effective for API prediction by capturing data from the entire tablet, while reflection models excelled in assessing mass gain by focusing on the surface layer. Among the DF strategies, MLDF with Principal Component Analysis (PCA) offered the most significant improvements in predictive accuracy by filtering out irrelevant information. Variable selection methods further enhanced model performance by reducing the number of latent variables required. Overall, the integration of multiple spectral datasets and DF techniques resulted in models that gave predictions for evaluation samples with lower errors, demonstrating their potential to optimize quality control in pharmaceutical manufacturing.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>39557178</pmid><doi>10.1016/j.ijpharm.2024.124957</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0378-5173
ispartof International journal of pharmaceutics, 2025-01, Vol.668, p.124957, Article 124957
issn 0378-5173
1873-3476
1873-3476
language eng
recordid cdi_proquest_miscellaneous_3130207345
source MEDLINE; Elsevier ScienceDirect Journals
subjects Chemistry, Pharmaceutical - methods
Chemometrics
Data fusion
Excipients - chemistry
Film coating
Least-Squares Analysis
NIR spectroscopy
PAT
Pharmaceutical Preparations - chemistry
Principal Component Analysis
Quality Control
Raman spectroscopy
Spectroscopy, Near-Infrared - methods
Spectrum Analysis, Raman - methods
Tableting
Tablets - chemistry
Tablets, Enteric-Coated - chemistry
title Simultaneous prediction of the API concentration and mass gain of film coated tablets using Near-Infrared and Raman spectroscopy and data fusion
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T03%3A57%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Simultaneous%20prediction%20of%20the%20API%20concentration%20and%20mass%20gain%20of%20film%20coated%20tablets%20using%20Near-Infrared%20and%20Raman%20spectroscopy%20and%20data%20fusion&rft.jtitle=International%20journal%20of%20pharmaceutics&rft.au=Szab%C3%B3-Sz%C5%91cs,%20Bence&rft.date=2025-01-05&rft.volume=668&rft.spage=124957&rft.pages=124957-&rft.artnum=124957&rft.issn=0378-5173&rft.eissn=1873-3476&rft_id=info:doi/10.1016/j.ijpharm.2024.124957&rft_dat=%3Cproquest_cross%3E3130207345%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3130207345&rft_id=info:pmid/39557178&rft_els_id=S0378517324011918&rfr_iscdi=true