m6A‐Modified SNRPA Controls Alternative Splicing of ERCC1 Exon 8 to Induce Cisplatin Resistance in Lung Adenocarcinoma
Alternative splicing (AS) generates protein diversity and is exploited by cancer cells to drive tumor progression and resistance to many cancer therapies, including chemotherapy. SNRPA is first identified as a spliceosome‐related gene that potentially modulates resistance to platinum chemotherapy. B...
Gespeichert in:
Veröffentlicht in: | Advanced science 2024-12, Vol.11 (47), p.e2404609-n/a |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 47 |
container_start_page | e2404609 |
container_title | Advanced science |
container_volume | 11 |
creator | Fan, Weina Huang, Jian Tian, Fanglin Hong, Xin Zhu, Kexin Zhan, Yuning Li, Xin Wang, Xiangyu Wang, Xin Cai, Li Xing, Ying |
description | Alternative splicing (AS) generates protein diversity and is exploited by cancer cells to drive tumor progression and resistance to many cancer therapies, including chemotherapy. SNRPA is first identified as a spliceosome‐related gene that potentially modulates resistance to platinum chemotherapy. Both the knockout or the knockdown of SNRPA via CRISPR/Cas9 and shRNA techniques can reverse the resistance of cisplatin‐resistant lung adenocarcinoma (LUAD) cells to cisplatin. SNRPA overexpression enhanced the resistance of cisplatin‐sensitive LUAD cells. Gene Ontology (GO) analysis reveals that SNRPA is associated with DNA damage repair. Depletion of SNRPA induced ERCC1 exon 8 skipping and reduced ERCC1–XPF complex formation, whereas SNRPA overexpression exerted the opposite effect. siRNAs targeting isoforms containing ERCC1 exon 8 [ERCC1‐E8 (+)] reversed SNRPA‐enhanced cisplatin resistance and DNA damage repair. Furthermore, the IGF2BP protein, an m6A reader, and the ELAVL1 protein, an RNA stabilizer recruited by IGF2BP1, are found to bind to the SNRPA mRNA. ELAVL1 promoted cisplatin resistance, DNA repair and ERCC1‐E8 (+) expression in an SNRPA‐dependent manner. In a mouse xenograft model, SNRPA‐KO CRISPR enhanced the sensitivity of LUAD cells to cisplatin. Overall, this study illuminates the role of SNRPA in platinum‐based drug resistance, thereby providing a novel avenue to potentially enhance chemosensitivity and improve the prognosis of patients with LUAD.
ELAVL1, in conjunction with IGF2BP, promotes the recognition of m6A methylation, thereby increasing SNRPA mRNA stability and expression. This elevated SNRPA expression subsequently promotes the formation of ERCC1‐E8(+), which includes exon 8 and encodes the XPF protein‐binding domain. The resulting increase in the production of the ERCC1‐XPF complex enhances DNA repair, leading to enhanced cisplatin resistance. |
doi_str_mv | 10.1002/advs.202404609 |
format | Article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_proquest_miscellaneous_3129689448</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_f4448c8239dc4049a87fd4c0283d2b5b</doaj_id><sourcerecordid>3146401863</sourcerecordid><originalsourceid>FETCH-LOGICAL-d3548-6644997141ec61a531dc0d8e37caff12701a06a4ab340589c439bfe102b845723</originalsourceid><addsrcrecordid>eNpdkstuEzEUhkcIRKvSLWtLbNik-D72Co2GFCKFixJga3lsT3Dk2GE8E9odj8Az8iQ4pKooK9vHnz_9Oj5V9RzBKwQhfqXtIV9hiCmkHMpH1TlGUsyIoPTxP_uz6jLnLYQQMVJTJJ5WZ0QyxmpEz6ubHW9-__z1Plnfe2fB-sPqUwPaFMchhQyaMLoh6tEfHFjvgzc-bkDqwXzVtgjMb1IEAowJLKKdjAOtz_tQ6AhWLvs86liK5bScyrPGupiMHooj7fSz6kmvQ3aXd-tF9eV6_rl9N1t-fLtom-XMEkbFjHNKpSxRkTMcaUaQNdAKR2qj-x7hGiINuaa6IxQyIQ0lsusdgrgTlNWYXFSLk9cmvVX7we_0cKuS9upvIQ0bpYfRm-BUTykVRmAirSktlVrUvaUGYkEs7lhXXK9Prv3U7Zw1rnRJhwfShzfRf1ObdFAIcUY4lsXw8s4wpO-Ty6Pa-WxcCDq6NGVFEJZcyJKjoC_-Q7dpKn8RjhTlFCLBSaHYifrhg7u9j4KgOk6IOk6Iup8Q1bz5ukYQ1YL8AR7irlU</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3146401863</pqid></control><display><type>article</type><title>m6A‐Modified SNRPA Controls Alternative Splicing of ERCC1 Exon 8 to Induce Cisplatin Resistance in Lung Adenocarcinoma</title><source>DOAJ Directory of Open Access Journals</source><source>Wiley-Blackwell Open Access Titles</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Wiley Online Library All Journals</source><source>PubMed Central</source><creator>Fan, Weina ; Huang, Jian ; Tian, Fanglin ; Hong, Xin ; Zhu, Kexin ; Zhan, Yuning ; Li, Xin ; Wang, Xiangyu ; Wang, Xin ; Cai, Li ; Xing, Ying</creator><creatorcontrib>Fan, Weina ; Huang, Jian ; Tian, Fanglin ; Hong, Xin ; Zhu, Kexin ; Zhan, Yuning ; Li, Xin ; Wang, Xiangyu ; Wang, Xin ; Cai, Li ; Xing, Ying</creatorcontrib><description>Alternative splicing (AS) generates protein diversity and is exploited by cancer cells to drive tumor progression and resistance to many cancer therapies, including chemotherapy. SNRPA is first identified as a spliceosome‐related gene that potentially modulates resistance to platinum chemotherapy. Both the knockout or the knockdown of SNRPA via CRISPR/Cas9 and shRNA techniques can reverse the resistance of cisplatin‐resistant lung adenocarcinoma (LUAD) cells to cisplatin. SNRPA overexpression enhanced the resistance of cisplatin‐sensitive LUAD cells. Gene Ontology (GO) analysis reveals that SNRPA is associated with DNA damage repair. Depletion of SNRPA induced ERCC1 exon 8 skipping and reduced ERCC1–XPF complex formation, whereas SNRPA overexpression exerted the opposite effect. siRNAs targeting isoforms containing ERCC1 exon 8 [ERCC1‐E8 (+)] reversed SNRPA‐enhanced cisplatin resistance and DNA damage repair. Furthermore, the IGF2BP protein, an m6A reader, and the ELAVL1 protein, an RNA stabilizer recruited by IGF2BP1, are found to bind to the SNRPA mRNA. ELAVL1 promoted cisplatin resistance, DNA repair and ERCC1‐E8 (+) expression in an SNRPA‐dependent manner. In a mouse xenograft model, SNRPA‐KO CRISPR enhanced the sensitivity of LUAD cells to cisplatin. Overall, this study illuminates the role of SNRPA in platinum‐based drug resistance, thereby providing a novel avenue to potentially enhance chemosensitivity and improve the prognosis of patients with LUAD.
ELAVL1, in conjunction with IGF2BP, promotes the recognition of m6A methylation, thereby increasing SNRPA mRNA stability and expression. This elevated SNRPA expression subsequently promotes the formation of ERCC1‐E8(+), which includes exon 8 and encodes the XPF protein‐binding domain. The resulting increase in the production of the ERCC1‐XPF complex enhances DNA repair, leading to enhanced cisplatin resistance.</description><identifier>ISSN: 2198-3844</identifier><identifier>EISSN: 2198-3844</identifier><identifier>DOI: 10.1002/advs.202404609</identifier><identifier>PMID: 39555714</identifier><language>eng</language><publisher>Weinheim: John Wiley & Sons, Inc</publisher><subject>alternative splicing ; Apoptosis ; Cancer therapies ; Chemotherapy ; cisplatin resistance ; Cloning ; CRISPR ; Datasets ; DNA damage ; DNA repair ; Drug resistance ; ELAVL1 ; ERCC1 ; Gene expression ; Lung cancer ; Medical prognosis ; Proteins ; SNRPA</subject><ispartof>Advanced science, 2024-12, Vol.11 (47), p.e2404609-n/a</ispartof><rights>2024 The Author(s). Advanced Science published by Wiley‐VCH GmbH</rights><rights>2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2024 The Author(s). Advanced Science published by Wiley‐VCH GmbH.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0001-9666-8926</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11653629/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11653629/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,1416,2100,11561,27923,27924,45573,45574,46051,46475,53790,53792</link.rule.ids></links><search><creatorcontrib>Fan, Weina</creatorcontrib><creatorcontrib>Huang, Jian</creatorcontrib><creatorcontrib>Tian, Fanglin</creatorcontrib><creatorcontrib>Hong, Xin</creatorcontrib><creatorcontrib>Zhu, Kexin</creatorcontrib><creatorcontrib>Zhan, Yuning</creatorcontrib><creatorcontrib>Li, Xin</creatorcontrib><creatorcontrib>Wang, Xiangyu</creatorcontrib><creatorcontrib>Wang, Xin</creatorcontrib><creatorcontrib>Cai, Li</creatorcontrib><creatorcontrib>Xing, Ying</creatorcontrib><title>m6A‐Modified SNRPA Controls Alternative Splicing of ERCC1 Exon 8 to Induce Cisplatin Resistance in Lung Adenocarcinoma</title><title>Advanced science</title><description>Alternative splicing (AS) generates protein diversity and is exploited by cancer cells to drive tumor progression and resistance to many cancer therapies, including chemotherapy. SNRPA is first identified as a spliceosome‐related gene that potentially modulates resistance to platinum chemotherapy. Both the knockout or the knockdown of SNRPA via CRISPR/Cas9 and shRNA techniques can reverse the resistance of cisplatin‐resistant lung adenocarcinoma (LUAD) cells to cisplatin. SNRPA overexpression enhanced the resistance of cisplatin‐sensitive LUAD cells. Gene Ontology (GO) analysis reveals that SNRPA is associated with DNA damage repair. Depletion of SNRPA induced ERCC1 exon 8 skipping and reduced ERCC1–XPF complex formation, whereas SNRPA overexpression exerted the opposite effect. siRNAs targeting isoforms containing ERCC1 exon 8 [ERCC1‐E8 (+)] reversed SNRPA‐enhanced cisplatin resistance and DNA damage repair. Furthermore, the IGF2BP protein, an m6A reader, and the ELAVL1 protein, an RNA stabilizer recruited by IGF2BP1, are found to bind to the SNRPA mRNA. ELAVL1 promoted cisplatin resistance, DNA repair and ERCC1‐E8 (+) expression in an SNRPA‐dependent manner. In a mouse xenograft model, SNRPA‐KO CRISPR enhanced the sensitivity of LUAD cells to cisplatin. Overall, this study illuminates the role of SNRPA in platinum‐based drug resistance, thereby providing a novel avenue to potentially enhance chemosensitivity and improve the prognosis of patients with LUAD.
ELAVL1, in conjunction with IGF2BP, promotes the recognition of m6A methylation, thereby increasing SNRPA mRNA stability and expression. This elevated SNRPA expression subsequently promotes the formation of ERCC1‐E8(+), which includes exon 8 and encodes the XPF protein‐binding domain. The resulting increase in the production of the ERCC1‐XPF complex enhances DNA repair, leading to enhanced cisplatin resistance.</description><subject>alternative splicing</subject><subject>Apoptosis</subject><subject>Cancer therapies</subject><subject>Chemotherapy</subject><subject>cisplatin resistance</subject><subject>Cloning</subject><subject>CRISPR</subject><subject>Datasets</subject><subject>DNA damage</subject><subject>DNA repair</subject><subject>Drug resistance</subject><subject>ELAVL1</subject><subject>ERCC1</subject><subject>Gene expression</subject><subject>Lung cancer</subject><subject>Medical prognosis</subject><subject>Proteins</subject><subject>SNRPA</subject><issn>2198-3844</issn><issn>2198-3844</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><sourceid>DOA</sourceid><recordid>eNpdkstuEzEUhkcIRKvSLWtLbNik-D72Co2GFCKFixJga3lsT3Dk2GE8E9odj8Az8iQ4pKooK9vHnz_9Oj5V9RzBKwQhfqXtIV9hiCmkHMpH1TlGUsyIoPTxP_uz6jLnLYQQMVJTJJ5WZ0QyxmpEz6ubHW9-__z1Plnfe2fB-sPqUwPaFMchhQyaMLoh6tEfHFjvgzc-bkDqwXzVtgjMb1IEAowJLKKdjAOtz_tQ6AhWLvs86liK5bScyrPGupiMHooj7fSz6kmvQ3aXd-tF9eV6_rl9N1t-fLtom-XMEkbFjHNKpSxRkTMcaUaQNdAKR2qj-x7hGiINuaa6IxQyIQ0lsusdgrgTlNWYXFSLk9cmvVX7we_0cKuS9upvIQ0bpYfRm-BUTykVRmAirSktlVrUvaUGYkEs7lhXXK9Prv3U7Zw1rnRJhwfShzfRf1ObdFAIcUY4lsXw8s4wpO-Ty6Pa-WxcCDq6NGVFEJZcyJKjoC_-Q7dpKn8RjhTlFCLBSaHYifrhg7u9j4KgOk6IOk6Iup8Q1bz5ukYQ1YL8AR7irlU</recordid><startdate>20241201</startdate><enddate>20241201</enddate><creator>Fan, Weina</creator><creator>Huang, Jian</creator><creator>Tian, Fanglin</creator><creator>Hong, Xin</creator><creator>Zhu, Kexin</creator><creator>Zhan, Yuning</creator><creator>Li, Xin</creator><creator>Wang, Xiangyu</creator><creator>Wang, Xin</creator><creator>Cai, Li</creator><creator>Xing, Ying</creator><general>John Wiley & Sons, Inc</general><general>John Wiley and Sons Inc</general><general>Wiley</general><scope>24P</scope><scope>WIN</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>M2O</scope><scope>M2P</scope><scope>MBDVC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-9666-8926</orcidid></search><sort><creationdate>20241201</creationdate><title>m6A‐Modified SNRPA Controls Alternative Splicing of ERCC1 Exon 8 to Induce Cisplatin Resistance in Lung Adenocarcinoma</title><author>Fan, Weina ; Huang, Jian ; Tian, Fanglin ; Hong, Xin ; Zhu, Kexin ; Zhan, Yuning ; Li, Xin ; Wang, Xiangyu ; Wang, Xin ; Cai, Li ; Xing, Ying</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-d3548-6644997141ec61a531dc0d8e37caff12701a06a4ab340589c439bfe102b845723</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>alternative splicing</topic><topic>Apoptosis</topic><topic>Cancer therapies</topic><topic>Chemotherapy</topic><topic>cisplatin resistance</topic><topic>Cloning</topic><topic>CRISPR</topic><topic>Datasets</topic><topic>DNA damage</topic><topic>DNA repair</topic><topic>Drug resistance</topic><topic>ELAVL1</topic><topic>ERCC1</topic><topic>Gene expression</topic><topic>Lung cancer</topic><topic>Medical prognosis</topic><topic>Proteins</topic><topic>SNRPA</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fan, Weina</creatorcontrib><creatorcontrib>Huang, Jian</creatorcontrib><creatorcontrib>Tian, Fanglin</creatorcontrib><creatorcontrib>Hong, Xin</creatorcontrib><creatorcontrib>Zhu, Kexin</creatorcontrib><creatorcontrib>Zhan, Yuning</creatorcontrib><creatorcontrib>Li, Xin</creatorcontrib><creatorcontrib>Wang, Xiangyu</creatorcontrib><creatorcontrib>Wang, Xin</creatorcontrib><creatorcontrib>Cai, Li</creatorcontrib><creatorcontrib>Xing, Ying</creatorcontrib><collection>Wiley-Blackwell Open Access Titles</collection><collection>Wiley Free Content</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Research Library (Corporate)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Advanced science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fan, Weina</au><au>Huang, Jian</au><au>Tian, Fanglin</au><au>Hong, Xin</au><au>Zhu, Kexin</au><au>Zhan, Yuning</au><au>Li, Xin</au><au>Wang, Xiangyu</au><au>Wang, Xin</au><au>Cai, Li</au><au>Xing, Ying</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>m6A‐Modified SNRPA Controls Alternative Splicing of ERCC1 Exon 8 to Induce Cisplatin Resistance in Lung Adenocarcinoma</atitle><jtitle>Advanced science</jtitle><date>2024-12-01</date><risdate>2024</risdate><volume>11</volume><issue>47</issue><spage>e2404609</spage><epage>n/a</epage><pages>e2404609-n/a</pages><issn>2198-3844</issn><eissn>2198-3844</eissn><abstract>Alternative splicing (AS) generates protein diversity and is exploited by cancer cells to drive tumor progression and resistance to many cancer therapies, including chemotherapy. SNRPA is first identified as a spliceosome‐related gene that potentially modulates resistance to platinum chemotherapy. Both the knockout or the knockdown of SNRPA via CRISPR/Cas9 and shRNA techniques can reverse the resistance of cisplatin‐resistant lung adenocarcinoma (LUAD) cells to cisplatin. SNRPA overexpression enhanced the resistance of cisplatin‐sensitive LUAD cells. Gene Ontology (GO) analysis reveals that SNRPA is associated with DNA damage repair. Depletion of SNRPA induced ERCC1 exon 8 skipping and reduced ERCC1–XPF complex formation, whereas SNRPA overexpression exerted the opposite effect. siRNAs targeting isoforms containing ERCC1 exon 8 [ERCC1‐E8 (+)] reversed SNRPA‐enhanced cisplatin resistance and DNA damage repair. Furthermore, the IGF2BP protein, an m6A reader, and the ELAVL1 protein, an RNA stabilizer recruited by IGF2BP1, are found to bind to the SNRPA mRNA. ELAVL1 promoted cisplatin resistance, DNA repair and ERCC1‐E8 (+) expression in an SNRPA‐dependent manner. In a mouse xenograft model, SNRPA‐KO CRISPR enhanced the sensitivity of LUAD cells to cisplatin. Overall, this study illuminates the role of SNRPA in platinum‐based drug resistance, thereby providing a novel avenue to potentially enhance chemosensitivity and improve the prognosis of patients with LUAD.
ELAVL1, in conjunction with IGF2BP, promotes the recognition of m6A methylation, thereby increasing SNRPA mRNA stability and expression. This elevated SNRPA expression subsequently promotes the formation of ERCC1‐E8(+), which includes exon 8 and encodes the XPF protein‐binding domain. The resulting increase in the production of the ERCC1‐XPF complex enhances DNA repair, leading to enhanced cisplatin resistance.</abstract><cop>Weinheim</cop><pub>John Wiley & Sons, Inc</pub><pmid>39555714</pmid><doi>10.1002/advs.202404609</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0001-9666-8926</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2198-3844 |
ispartof | Advanced science, 2024-12, Vol.11 (47), p.e2404609-n/a |
issn | 2198-3844 2198-3844 |
language | eng |
recordid | cdi_proquest_miscellaneous_3129689448 |
source | DOAJ Directory of Open Access Journals; Wiley-Blackwell Open Access Titles; EZB-FREE-00999 freely available EZB journals; Wiley Online Library All Journals; PubMed Central |
subjects | alternative splicing Apoptosis Cancer therapies Chemotherapy cisplatin resistance Cloning CRISPR Datasets DNA damage DNA repair Drug resistance ELAVL1 ERCC1 Gene expression Lung cancer Medical prognosis Proteins SNRPA |
title | m6A‐Modified SNRPA Controls Alternative Splicing of ERCC1 Exon 8 to Induce Cisplatin Resistance in Lung Adenocarcinoma |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T23%3A29%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=m6A%E2%80%90Modified%20SNRPA%20Controls%20Alternative%20Splicing%20of%20ERCC1%20Exon%208%20to%20Induce%20Cisplatin%20Resistance%20in%20Lung%20Adenocarcinoma&rft.jtitle=Advanced%20science&rft.au=Fan,%20Weina&rft.date=2024-12-01&rft.volume=11&rft.issue=47&rft.spage=e2404609&rft.epage=n/a&rft.pages=e2404609-n/a&rft.issn=2198-3844&rft.eissn=2198-3844&rft_id=info:doi/10.1002/advs.202404609&rft_dat=%3Cproquest_doaj_%3E3146401863%3C/proquest_doaj_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3146401863&rft_id=info:pmid/39555714&rft_doaj_id=oai_doaj_org_article_f4448c8239dc4049a87fd4c0283d2b5b&rfr_iscdi=true |