NMR 15N Relaxation Experiments for the Investigation of Picosecond to Nanoseconds Structural Dynamics of Proteins

Nuclear magnetic resonance (NMR) spectroscopy allows studying proteins in solution and under physiological temperatures. Frequently, either the amide groups of the protein backbone or the methyl groups in side chains are used as reporters of structural dynamics in proteins. A structural dynamics stu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of visualized experiments 2024-11 (213)
Hauptverfasser: Stief, Tobias, Vormann, Katharina, Lakomek, Nils-Alexander
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 213
container_start_page
container_title Journal of visualized experiments
container_volume
creator Stief, Tobias
Vormann, Katharina
Lakomek, Nils-Alexander
description Nuclear magnetic resonance (NMR) spectroscopy allows studying proteins in solution and under physiological temperatures. Frequently, either the amide groups of the protein backbone or the methyl groups in side chains are used as reporters of structural dynamics in proteins. A structural dynamics study of the protein backbone of globular proteins on N labeled and fully protonated samples usually works well for proteins with a molecular weight of up to 50 kDa. When side chain deuteration in combination with transverse relaxation optimized spectroscopy (TROSY) is applied, this limit can be extended up to 200 kDa for globular proteins and up to 1 MDa when the focus is on the side chains. When intrinsically disordered proteins (IDPs) or proteins with intrinsically disordered regions (IDRs) are investigated, these weight limitations do not apply but can go well beyond. The reason is that IDPs or IDRs, characterized by high internal flexibility, are frequently dynamically decoupled. Various NMR methods offer atomic-resolution insights into structural protein dynamics across a wide range of time scales, from picoseconds up to hours. Standard N relaxation measurements overview a protein's internal flexibility and characterize the protein backbone dynamics experienced on the fast pico- to nanosecond timescale. This article presents a hands-on protocol for setting up and recording NMR N R1, R2, and heteronuclear Overhauser effect (hetNOE) experiments. We show exemplary data and explain how to interpret them simply qualitatively before any more sophisticated analysis.
doi_str_mv 10.3791/67088
format Article
fullrecord <record><control><sourceid>proquest_223</sourceid><recordid>TN_cdi_proquest_miscellaneous_3129688500</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3129688500</sourcerecordid><originalsourceid>FETCH-LOGICAL-c171t-2c22fd3b64688307c31e8e033924391e2050bf4c887d0cab0c65682c07e3b2ee3</originalsourceid><addsrcrecordid>eNpNkF9LwzAUxYMobs59BcmL4Es1f9omfZQ5dTCnTAXfSprdaqVNtiSV7dtbtyk-3Xvhdw73HISGlFxykdGrVBApD1CfZjGJiBRvh__2Hjrx_pOQlJFEHqMez5IkETLuo9XsYY5pMsNzqNVahcoaPF4vwVUNmOBxaR0OH4An5gt8qN53hC3xU6WtB23NAgeLZ8rsL4-fg2t1aJ2q8c3GqKbSfitwNkBl_Ck6KlXtYbifA_R6O34Z3UfTx7vJ6HoaaSpoiJhmrFzwIo1TKTkRmlOQQDjPWMwzCl0SUpSxllIsiFYF0WmSSqaJAF4wAD5AFzvfpbOrtns-byqvoa6VAdv6nFOWddYJIR16vkO1s947KPNll1-5TU5J_tNuvm234872lm3RwOKP-q2TfwOk6HRB</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3129688500</pqid></control><display><type>article</type><title>NMR 15N Relaxation Experiments for the Investigation of Picosecond to Nanoseconds Structural Dynamics of Proteins</title><source>Journal of Visualized Experiments : JoVE</source><creator>Stief, Tobias ; Vormann, Katharina ; Lakomek, Nils-Alexander</creator><creatorcontrib>Stief, Tobias ; Vormann, Katharina ; Lakomek, Nils-Alexander</creatorcontrib><description>Nuclear magnetic resonance (NMR) spectroscopy allows studying proteins in solution and under physiological temperatures. Frequently, either the amide groups of the protein backbone or the methyl groups in side chains are used as reporters of structural dynamics in proteins. A structural dynamics study of the protein backbone of globular proteins on N labeled and fully protonated samples usually works well for proteins with a molecular weight of up to 50 kDa. When side chain deuteration in combination with transverse relaxation optimized spectroscopy (TROSY) is applied, this limit can be extended up to 200 kDa for globular proteins and up to 1 MDa when the focus is on the side chains. When intrinsically disordered proteins (IDPs) or proteins with intrinsically disordered regions (IDRs) are investigated, these weight limitations do not apply but can go well beyond. The reason is that IDPs or IDRs, characterized by high internal flexibility, are frequently dynamically decoupled. Various NMR methods offer atomic-resolution insights into structural protein dynamics across a wide range of time scales, from picoseconds up to hours. Standard N relaxation measurements overview a protein's internal flexibility and characterize the protein backbone dynamics experienced on the fast pico- to nanosecond timescale. This article presents a hands-on protocol for setting up and recording NMR N R1, R2, and heteronuclear Overhauser effect (hetNOE) experiments. We show exemplary data and explain how to interpret them simply qualitatively before any more sophisticated analysis.</description><identifier>ISSN: 1940-087X</identifier><identifier>EISSN: 1940-087X</identifier><identifier>DOI: 10.3791/67088</identifier><identifier>PMID: 39555784</identifier><language>eng</language><publisher>United States</publisher><subject>Intrinsically Disordered Proteins - chemistry ; Nitrogen Isotopes - chemistry ; Nuclear Magnetic Resonance, Biomolecular - methods ; Protein Conformation ; Proteins - chemistry</subject><ispartof>Journal of visualized experiments, 2024-11 (213)</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,3841,27922,27923</link.rule.ids><linktorsrc>$$Uhttp://dx.doi.org/10.3791/67088$$EView_record_in_Journal_of_Visualized_Experiments$$FView_record_in_$$GJournal_of_Visualized_Experiments</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39555784$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Stief, Tobias</creatorcontrib><creatorcontrib>Vormann, Katharina</creatorcontrib><creatorcontrib>Lakomek, Nils-Alexander</creatorcontrib><title>NMR 15N Relaxation Experiments for the Investigation of Picosecond to Nanoseconds Structural Dynamics of Proteins</title><title>Journal of visualized experiments</title><addtitle>J Vis Exp</addtitle><description>Nuclear magnetic resonance (NMR) spectroscopy allows studying proteins in solution and under physiological temperatures. Frequently, either the amide groups of the protein backbone or the methyl groups in side chains are used as reporters of structural dynamics in proteins. A structural dynamics study of the protein backbone of globular proteins on N labeled and fully protonated samples usually works well for proteins with a molecular weight of up to 50 kDa. When side chain deuteration in combination with transverse relaxation optimized spectroscopy (TROSY) is applied, this limit can be extended up to 200 kDa for globular proteins and up to 1 MDa when the focus is on the side chains. When intrinsically disordered proteins (IDPs) or proteins with intrinsically disordered regions (IDRs) are investigated, these weight limitations do not apply but can go well beyond. The reason is that IDPs or IDRs, characterized by high internal flexibility, are frequently dynamically decoupled. Various NMR methods offer atomic-resolution insights into structural protein dynamics across a wide range of time scales, from picoseconds up to hours. Standard N relaxation measurements overview a protein's internal flexibility and characterize the protein backbone dynamics experienced on the fast pico- to nanosecond timescale. This article presents a hands-on protocol for setting up and recording NMR N R1, R2, and heteronuclear Overhauser effect (hetNOE) experiments. We show exemplary data and explain how to interpret them simply qualitatively before any more sophisticated analysis.</description><subject>Intrinsically Disordered Proteins - chemistry</subject><subject>Nitrogen Isotopes - chemistry</subject><subject>Nuclear Magnetic Resonance, Biomolecular - methods</subject><subject>Protein Conformation</subject><subject>Proteins - chemistry</subject><issn>1940-087X</issn><issn>1940-087X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpNkF9LwzAUxYMobs59BcmL4Es1f9omfZQ5dTCnTAXfSprdaqVNtiSV7dtbtyk-3Xvhdw73HISGlFxykdGrVBApD1CfZjGJiBRvh__2Hjrx_pOQlJFEHqMez5IkETLuo9XsYY5pMsNzqNVahcoaPF4vwVUNmOBxaR0OH4An5gt8qN53hC3xU6WtB23NAgeLZ8rsL4-fg2t1aJ2q8c3GqKbSfitwNkBl_Ck6KlXtYbifA_R6O34Z3UfTx7vJ6HoaaSpoiJhmrFzwIo1TKTkRmlOQQDjPWMwzCl0SUpSxllIsiFYF0WmSSqaJAF4wAD5AFzvfpbOrtns-byqvoa6VAdv6nFOWddYJIR16vkO1s947KPNll1-5TU5J_tNuvm234872lm3RwOKP-q2TfwOk6HRB</recordid><startdate>20241101</startdate><enddate>20241101</enddate><creator>Stief, Tobias</creator><creator>Vormann, Katharina</creator><creator>Lakomek, Nils-Alexander</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20241101</creationdate><title>NMR 15N Relaxation Experiments for the Investigation of Picosecond to Nanoseconds Structural Dynamics of Proteins</title><author>Stief, Tobias ; Vormann, Katharina ; Lakomek, Nils-Alexander</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c171t-2c22fd3b64688307c31e8e033924391e2050bf4c887d0cab0c65682c07e3b2ee3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Intrinsically Disordered Proteins - chemistry</topic><topic>Nitrogen Isotopes - chemistry</topic><topic>Nuclear Magnetic Resonance, Biomolecular - methods</topic><topic>Protein Conformation</topic><topic>Proteins - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Stief, Tobias</creatorcontrib><creatorcontrib>Vormann, Katharina</creatorcontrib><creatorcontrib>Lakomek, Nils-Alexander</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of visualized experiments</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Stief, Tobias</au><au>Vormann, Katharina</au><au>Lakomek, Nils-Alexander</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>NMR 15N Relaxation Experiments for the Investigation of Picosecond to Nanoseconds Structural Dynamics of Proteins</atitle><jtitle>Journal of visualized experiments</jtitle><addtitle>J Vis Exp</addtitle><date>2024-11-01</date><risdate>2024</risdate><issue>213</issue><issn>1940-087X</issn><eissn>1940-087X</eissn><abstract>Nuclear magnetic resonance (NMR) spectroscopy allows studying proteins in solution and under physiological temperatures. Frequently, either the amide groups of the protein backbone or the methyl groups in side chains are used as reporters of structural dynamics in proteins. A structural dynamics study of the protein backbone of globular proteins on N labeled and fully protonated samples usually works well for proteins with a molecular weight of up to 50 kDa. When side chain deuteration in combination with transverse relaxation optimized spectroscopy (TROSY) is applied, this limit can be extended up to 200 kDa for globular proteins and up to 1 MDa when the focus is on the side chains. When intrinsically disordered proteins (IDPs) or proteins with intrinsically disordered regions (IDRs) are investigated, these weight limitations do not apply but can go well beyond. The reason is that IDPs or IDRs, characterized by high internal flexibility, are frequently dynamically decoupled. Various NMR methods offer atomic-resolution insights into structural protein dynamics across a wide range of time scales, from picoseconds up to hours. Standard N relaxation measurements overview a protein's internal flexibility and characterize the protein backbone dynamics experienced on the fast pico- to nanosecond timescale. This article presents a hands-on protocol for setting up and recording NMR N R1, R2, and heteronuclear Overhauser effect (hetNOE) experiments. We show exemplary data and explain how to interpret them simply qualitatively before any more sophisticated analysis.</abstract><cop>United States</cop><pmid>39555784</pmid><doi>10.3791/67088</doi></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1940-087X
ispartof Journal of visualized experiments, 2024-11 (213)
issn 1940-087X
1940-087X
language eng
recordid cdi_proquest_miscellaneous_3129688500
source Journal of Visualized Experiments : JoVE
subjects Intrinsically Disordered Proteins - chemistry
Nitrogen Isotopes - chemistry
Nuclear Magnetic Resonance, Biomolecular - methods
Protein Conformation
Proteins - chemistry
title NMR 15N Relaxation Experiments for the Investigation of Picosecond to Nanoseconds Structural Dynamics of Proteins
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T22%3A00%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_223&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=NMR%2015N%20Relaxation%20Experiments%20for%20the%20Investigation%20of%20Picosecond%20to%20Nanoseconds%20Structural%20Dynamics%20of%20Proteins&rft.jtitle=Journal%20of%20visualized%20experiments&rft.au=Stief,%20Tobias&rft.date=2024-11-01&rft.issue=213&rft.issn=1940-087X&rft.eissn=1940-087X&rft_id=info:doi/10.3791/67088&rft_dat=%3Cproquest_223%3E3129688500%3C/proquest_223%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3129688500&rft_id=info:pmid/39555784&rfr_iscdi=true