NMR 15N Relaxation Experiments for the Investigation of Picosecond to Nanoseconds Structural Dynamics of Proteins
Nuclear magnetic resonance (NMR) spectroscopy allows studying proteins in solution and under physiological temperatures. Frequently, either the amide groups of the protein backbone or the methyl groups in side chains are used as reporters of structural dynamics in proteins. A structural dynamics stu...
Gespeichert in:
Veröffentlicht in: | Journal of visualized experiments 2024-11 (213) |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 213 |
container_start_page | |
container_title | Journal of visualized experiments |
container_volume | |
creator | Stief, Tobias Vormann, Katharina Lakomek, Nils-Alexander |
description | Nuclear magnetic resonance (NMR) spectroscopy allows studying proteins in solution and under physiological temperatures. Frequently, either the amide groups of the protein backbone or the methyl groups in side chains are used as reporters of structural dynamics in proteins. A structural dynamics study of the protein backbone of globular proteins on
N labeled and fully protonated samples usually works well for proteins with a molecular weight of up to 50 kDa. When side chain deuteration in combination with transverse relaxation optimized spectroscopy (TROSY) is applied, this limit can be extended up to 200 kDa for globular proteins and up to 1 MDa when the focus is on the side chains. When intrinsically disordered proteins (IDPs) or proteins with intrinsically disordered regions (IDRs) are investigated, these weight limitations do not apply but can go well beyond. The reason is that IDPs or IDRs, characterized by high internal flexibility, are frequently dynamically decoupled. Various NMR methods offer atomic-resolution insights into structural protein dynamics across a wide range of time scales, from picoseconds up to hours. Standard
N relaxation measurements overview a protein's internal flexibility and characterize the protein backbone dynamics experienced on the fast pico- to nanosecond timescale. This article presents a hands-on protocol for setting up and recording NMR
N R1, R2, and heteronuclear Overhauser effect (hetNOE) experiments. We show exemplary data and explain how to interpret them simply qualitatively before any more sophisticated analysis. |
doi_str_mv | 10.3791/67088 |
format | Article |
fullrecord | <record><control><sourceid>proquest_223</sourceid><recordid>TN_cdi_proquest_miscellaneous_3129688500</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3129688500</sourcerecordid><originalsourceid>FETCH-LOGICAL-c171t-2c22fd3b64688307c31e8e033924391e2050bf4c887d0cab0c65682c07e3b2ee3</originalsourceid><addsrcrecordid>eNpNkF9LwzAUxYMobs59BcmL4Es1f9omfZQ5dTCnTAXfSprdaqVNtiSV7dtbtyk-3Xvhdw73HISGlFxykdGrVBApD1CfZjGJiBRvh__2Hjrx_pOQlJFEHqMez5IkETLuo9XsYY5pMsNzqNVahcoaPF4vwVUNmOBxaR0OH4An5gt8qN53hC3xU6WtB23NAgeLZ8rsL4-fg2t1aJ2q8c3GqKbSfitwNkBl_Ck6KlXtYbifA_R6O34Z3UfTx7vJ6HoaaSpoiJhmrFzwIo1TKTkRmlOQQDjPWMwzCl0SUpSxllIsiFYF0WmSSqaJAF4wAD5AFzvfpbOrtns-byqvoa6VAdv6nFOWddYJIR16vkO1s947KPNll1-5TU5J_tNuvm234872lm3RwOKP-q2TfwOk6HRB</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3129688500</pqid></control><display><type>article</type><title>NMR 15N Relaxation Experiments for the Investigation of Picosecond to Nanoseconds Structural Dynamics of Proteins</title><source>Journal of Visualized Experiments : JoVE</source><creator>Stief, Tobias ; Vormann, Katharina ; Lakomek, Nils-Alexander</creator><creatorcontrib>Stief, Tobias ; Vormann, Katharina ; Lakomek, Nils-Alexander</creatorcontrib><description>Nuclear magnetic resonance (NMR) spectroscopy allows studying proteins in solution and under physiological temperatures. Frequently, either the amide groups of the protein backbone or the methyl groups in side chains are used as reporters of structural dynamics in proteins. A structural dynamics study of the protein backbone of globular proteins on
N labeled and fully protonated samples usually works well for proteins with a molecular weight of up to 50 kDa. When side chain deuteration in combination with transverse relaxation optimized spectroscopy (TROSY) is applied, this limit can be extended up to 200 kDa for globular proteins and up to 1 MDa when the focus is on the side chains. When intrinsically disordered proteins (IDPs) or proteins with intrinsically disordered regions (IDRs) are investigated, these weight limitations do not apply but can go well beyond. The reason is that IDPs or IDRs, characterized by high internal flexibility, are frequently dynamically decoupled. Various NMR methods offer atomic-resolution insights into structural protein dynamics across a wide range of time scales, from picoseconds up to hours. Standard
N relaxation measurements overview a protein's internal flexibility and characterize the protein backbone dynamics experienced on the fast pico- to nanosecond timescale. This article presents a hands-on protocol for setting up and recording NMR
N R1, R2, and heteronuclear Overhauser effect (hetNOE) experiments. We show exemplary data and explain how to interpret them simply qualitatively before any more sophisticated analysis.</description><identifier>ISSN: 1940-087X</identifier><identifier>EISSN: 1940-087X</identifier><identifier>DOI: 10.3791/67088</identifier><identifier>PMID: 39555784</identifier><language>eng</language><publisher>United States</publisher><subject>Intrinsically Disordered Proteins - chemistry ; Nitrogen Isotopes - chemistry ; Nuclear Magnetic Resonance, Biomolecular - methods ; Protein Conformation ; Proteins - chemistry</subject><ispartof>Journal of visualized experiments, 2024-11 (213)</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,3841,27922,27923</link.rule.ids><linktorsrc>$$Uhttp://dx.doi.org/10.3791/67088$$EView_record_in_Journal_of_Visualized_Experiments$$FView_record_in_$$GJournal_of_Visualized_Experiments</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39555784$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Stief, Tobias</creatorcontrib><creatorcontrib>Vormann, Katharina</creatorcontrib><creatorcontrib>Lakomek, Nils-Alexander</creatorcontrib><title>NMR 15N Relaxation Experiments for the Investigation of Picosecond to Nanoseconds Structural Dynamics of Proteins</title><title>Journal of visualized experiments</title><addtitle>J Vis Exp</addtitle><description>Nuclear magnetic resonance (NMR) spectroscopy allows studying proteins in solution and under physiological temperatures. Frequently, either the amide groups of the protein backbone or the methyl groups in side chains are used as reporters of structural dynamics in proteins. A structural dynamics study of the protein backbone of globular proteins on
N labeled and fully protonated samples usually works well for proteins with a molecular weight of up to 50 kDa. When side chain deuteration in combination with transverse relaxation optimized spectroscopy (TROSY) is applied, this limit can be extended up to 200 kDa for globular proteins and up to 1 MDa when the focus is on the side chains. When intrinsically disordered proteins (IDPs) or proteins with intrinsically disordered regions (IDRs) are investigated, these weight limitations do not apply but can go well beyond. The reason is that IDPs or IDRs, characterized by high internal flexibility, are frequently dynamically decoupled. Various NMR methods offer atomic-resolution insights into structural protein dynamics across a wide range of time scales, from picoseconds up to hours. Standard
N relaxation measurements overview a protein's internal flexibility and characterize the protein backbone dynamics experienced on the fast pico- to nanosecond timescale. This article presents a hands-on protocol for setting up and recording NMR
N R1, R2, and heteronuclear Overhauser effect (hetNOE) experiments. We show exemplary data and explain how to interpret them simply qualitatively before any more sophisticated analysis.</description><subject>Intrinsically Disordered Proteins - chemistry</subject><subject>Nitrogen Isotopes - chemistry</subject><subject>Nuclear Magnetic Resonance, Biomolecular - methods</subject><subject>Protein Conformation</subject><subject>Proteins - chemistry</subject><issn>1940-087X</issn><issn>1940-087X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpNkF9LwzAUxYMobs59BcmL4Es1f9omfZQ5dTCnTAXfSprdaqVNtiSV7dtbtyk-3Xvhdw73HISGlFxykdGrVBApD1CfZjGJiBRvh__2Hjrx_pOQlJFEHqMez5IkETLuo9XsYY5pMsNzqNVahcoaPF4vwVUNmOBxaR0OH4An5gt8qN53hC3xU6WtB23NAgeLZ8rsL4-fg2t1aJ2q8c3GqKbSfitwNkBl_Ck6KlXtYbifA_R6O34Z3UfTx7vJ6HoaaSpoiJhmrFzwIo1TKTkRmlOQQDjPWMwzCl0SUpSxllIsiFYF0WmSSqaJAF4wAD5AFzvfpbOrtns-byqvoa6VAdv6nFOWddYJIR16vkO1s947KPNll1-5TU5J_tNuvm234872lm3RwOKP-q2TfwOk6HRB</recordid><startdate>20241101</startdate><enddate>20241101</enddate><creator>Stief, Tobias</creator><creator>Vormann, Katharina</creator><creator>Lakomek, Nils-Alexander</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20241101</creationdate><title>NMR 15N Relaxation Experiments for the Investigation of Picosecond to Nanoseconds Structural Dynamics of Proteins</title><author>Stief, Tobias ; Vormann, Katharina ; Lakomek, Nils-Alexander</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c171t-2c22fd3b64688307c31e8e033924391e2050bf4c887d0cab0c65682c07e3b2ee3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Intrinsically Disordered Proteins - chemistry</topic><topic>Nitrogen Isotopes - chemistry</topic><topic>Nuclear Magnetic Resonance, Biomolecular - methods</topic><topic>Protein Conformation</topic><topic>Proteins - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Stief, Tobias</creatorcontrib><creatorcontrib>Vormann, Katharina</creatorcontrib><creatorcontrib>Lakomek, Nils-Alexander</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of visualized experiments</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Stief, Tobias</au><au>Vormann, Katharina</au><au>Lakomek, Nils-Alexander</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>NMR 15N Relaxation Experiments for the Investigation of Picosecond to Nanoseconds Structural Dynamics of Proteins</atitle><jtitle>Journal of visualized experiments</jtitle><addtitle>J Vis Exp</addtitle><date>2024-11-01</date><risdate>2024</risdate><issue>213</issue><issn>1940-087X</issn><eissn>1940-087X</eissn><abstract>Nuclear magnetic resonance (NMR) spectroscopy allows studying proteins in solution and under physiological temperatures. Frequently, either the amide groups of the protein backbone or the methyl groups in side chains are used as reporters of structural dynamics in proteins. A structural dynamics study of the protein backbone of globular proteins on
N labeled and fully protonated samples usually works well for proteins with a molecular weight of up to 50 kDa. When side chain deuteration in combination with transverse relaxation optimized spectroscopy (TROSY) is applied, this limit can be extended up to 200 kDa for globular proteins and up to 1 MDa when the focus is on the side chains. When intrinsically disordered proteins (IDPs) or proteins with intrinsically disordered regions (IDRs) are investigated, these weight limitations do not apply but can go well beyond. The reason is that IDPs or IDRs, characterized by high internal flexibility, are frequently dynamically decoupled. Various NMR methods offer atomic-resolution insights into structural protein dynamics across a wide range of time scales, from picoseconds up to hours. Standard
N relaxation measurements overview a protein's internal flexibility and characterize the protein backbone dynamics experienced on the fast pico- to nanosecond timescale. This article presents a hands-on protocol for setting up and recording NMR
N R1, R2, and heteronuclear Overhauser effect (hetNOE) experiments. We show exemplary data and explain how to interpret them simply qualitatively before any more sophisticated analysis.</abstract><cop>United States</cop><pmid>39555784</pmid><doi>10.3791/67088</doi></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1940-087X |
ispartof | Journal of visualized experiments, 2024-11 (213) |
issn | 1940-087X 1940-087X |
language | eng |
recordid | cdi_proquest_miscellaneous_3129688500 |
source | Journal of Visualized Experiments : JoVE |
subjects | Intrinsically Disordered Proteins - chemistry Nitrogen Isotopes - chemistry Nuclear Magnetic Resonance, Biomolecular - methods Protein Conformation Proteins - chemistry |
title | NMR 15N Relaxation Experiments for the Investigation of Picosecond to Nanoseconds Structural Dynamics of Proteins |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T22%3A00%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_223&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=NMR%2015N%20Relaxation%20Experiments%20for%20the%20Investigation%20of%20Picosecond%20to%20Nanoseconds%20Structural%20Dynamics%20of%20Proteins&rft.jtitle=Journal%20of%20visualized%20experiments&rft.au=Stief,%20Tobias&rft.date=2024-11-01&rft.issue=213&rft.issn=1940-087X&rft.eissn=1940-087X&rft_id=info:doi/10.3791/67088&rft_dat=%3Cproquest_223%3E3129688500%3C/proquest_223%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3129688500&rft_id=info:pmid/39555784&rfr_iscdi=true |