Unravelling Species-Specific Loading Effects on Oxygen Reduction Activity of Heteronuclear Single Atom Catalysts

Toward high-density single atom catalysts (SACs), the interaction between neighboring SACs and the induced non-linear loading effect become crucial for their intrinsic catalytic performance. Despite recent investigations on homonuclear SACs, understanding such effect in heteronuclear SACs remains li...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Small methods 2024-11, p.e2401333
Hauptverfasser: Yang, Tong, Ding, Keda, Zhou, Jun, Ma, Xiaoyang, Tan, Kay Chen, Wang, Ge, Huang, Haitao, Yang, Ming
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page e2401333
container_title Small methods
container_volume
creator Yang, Tong
Ding, Keda
Zhou, Jun
Ma, Xiaoyang
Tan, Kay Chen
Wang, Ge
Huang, Haitao
Yang, Ming
description Toward high-density single atom catalysts (SACs), the interaction between neighboring SACs and the induced non-linear loading effect become crucial for their intrinsic catalytic performance. Despite recent investigations on homonuclear SACs, understanding such effect in heteronuclear SACs remains limited. Using Fe and Co SACs co-supported on the nitrogen-doped graphene as a model system, the loading effect on the site-specific activity of heteronuclear SACs toward oxygen reduction reaction (ORR) is here reported by density functional theory calculations. The Fe site exhibits an oscillatory decrease in activity with the loading. In contrast, the Co site has a volcano-like activity with the optimum performance achieved at ≈16.8 wt.% (average inter-site distance: ≈7 Å). At the ultra-high loading of 38.4 wt.% (inter-site distance: ≈4 Å), the Co site is the only ORR active site, whereas Fe sites turn into spectators. This distinct loading-dependent activity between the Fe and Co sites can be ascribed to their difference in the binding capability with the substrate and the d  and d orbitals' occupation. These findings highlight the importance of the loading effect in heteronuclear SACs, which could be useful for the development of high-performance heteronuclear and high-entropy SACs toward various catalytic reactions in the high-loading regime.
doi_str_mv 10.1002/smtd.202401333
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3129683404</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3129683404</sourcerecordid><originalsourceid>FETCH-LOGICAL-c180t-3439e1c3c7a5ffa509917d5302b62275fcf2d9258020419a7b9ef8baf52b705b3</originalsourceid><addsrcrecordid>eNpNUE1LAzEUDKLYUnv1KDl62ZqPze7mWEq1QqFg7XnJZl_Kyn6ZZIv996a2iqd5zJsZmEHonpIZJYQ9ucaXM0ZYTCjn_AqNGU-SSCYku_53j9DUuQ8SDEEmGL1FIy6FYIEZo37XWnWAuq7aPd72oCtw0Q-aSuN1p8rTY2kMaO9w1-LN13EPLX6DctC-CsQ8wKHyR9wZvAIPtmsHXYOyeBusNeC57xq8UF7VR-fdHboxqnYwveAE7Z6X74tVtN68vC7m60jTjPiIx1wC1VynShijBJGSpqXghBUJY6kw2rBSMpGFVjGVKi0kmKxQRrAiJaLgE_R4zu1t9zmA83lTOR2Kqha6weWcMplkPCZxkM7OUm075yyYvLdVo-wxpyQ_DZ2fhs7_hg6Gh0v2UDRQ_sl_Z-XfnsN58g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3129683404</pqid></control><display><type>article</type><title>Unravelling Species-Specific Loading Effects on Oxygen Reduction Activity of Heteronuclear Single Atom Catalysts</title><source>Access via Wiley Online Library</source><creator>Yang, Tong ; Ding, Keda ; Zhou, Jun ; Ma, Xiaoyang ; Tan, Kay Chen ; Wang, Ge ; Huang, Haitao ; Yang, Ming</creator><creatorcontrib>Yang, Tong ; Ding, Keda ; Zhou, Jun ; Ma, Xiaoyang ; Tan, Kay Chen ; Wang, Ge ; Huang, Haitao ; Yang, Ming</creatorcontrib><description>Toward high-density single atom catalysts (SACs), the interaction between neighboring SACs and the induced non-linear loading effect become crucial for their intrinsic catalytic performance. Despite recent investigations on homonuclear SACs, understanding such effect in heteronuclear SACs remains limited. Using Fe and Co SACs co-supported on the nitrogen-doped graphene as a model system, the loading effect on the site-specific activity of heteronuclear SACs toward oxygen reduction reaction (ORR) is here reported by density functional theory calculations. The Fe site exhibits an oscillatory decrease in activity with the loading. In contrast, the Co site has a volcano-like activity with the optimum performance achieved at ≈16.8 wt.% (average inter-site distance: ≈7 Å). At the ultra-high loading of 38.4 wt.% (inter-site distance: ≈4 Å), the Co site is the only ORR active site, whereas Fe sites turn into spectators. This distinct loading-dependent activity between the Fe and Co sites can be ascribed to their difference in the binding capability with the substrate and the d  and d orbitals' occupation. These findings highlight the importance of the loading effect in heteronuclear SACs, which could be useful for the development of high-performance heteronuclear and high-entropy SACs toward various catalytic reactions in the high-loading regime.</description><identifier>ISSN: 2366-9608</identifier><identifier>EISSN: 2366-9608</identifier><identifier>DOI: 10.1002/smtd.202401333</identifier><identifier>PMID: 39552000</identifier><language>eng</language><publisher>Germany</publisher><ispartof>Small methods, 2024-11, p.e2401333</ispartof><rights>2024 Wiley‐VCH GmbH.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c180t-3439e1c3c7a5ffa509917d5302b62275fcf2d9258020419a7b9ef8baf52b705b3</cites><orcidid>0000-0002-0876-1221</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39552000$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yang, Tong</creatorcontrib><creatorcontrib>Ding, Keda</creatorcontrib><creatorcontrib>Zhou, Jun</creatorcontrib><creatorcontrib>Ma, Xiaoyang</creatorcontrib><creatorcontrib>Tan, Kay Chen</creatorcontrib><creatorcontrib>Wang, Ge</creatorcontrib><creatorcontrib>Huang, Haitao</creatorcontrib><creatorcontrib>Yang, Ming</creatorcontrib><title>Unravelling Species-Specific Loading Effects on Oxygen Reduction Activity of Heteronuclear Single Atom Catalysts</title><title>Small methods</title><addtitle>Small Methods</addtitle><description>Toward high-density single atom catalysts (SACs), the interaction between neighboring SACs and the induced non-linear loading effect become crucial for their intrinsic catalytic performance. Despite recent investigations on homonuclear SACs, understanding such effect in heteronuclear SACs remains limited. Using Fe and Co SACs co-supported on the nitrogen-doped graphene as a model system, the loading effect on the site-specific activity of heteronuclear SACs toward oxygen reduction reaction (ORR) is here reported by density functional theory calculations. The Fe site exhibits an oscillatory decrease in activity with the loading. In contrast, the Co site has a volcano-like activity with the optimum performance achieved at ≈16.8 wt.% (average inter-site distance: ≈7 Å). At the ultra-high loading of 38.4 wt.% (inter-site distance: ≈4 Å), the Co site is the only ORR active site, whereas Fe sites turn into spectators. This distinct loading-dependent activity between the Fe and Co sites can be ascribed to their difference in the binding capability with the substrate and the d  and d orbitals' occupation. These findings highlight the importance of the loading effect in heteronuclear SACs, which could be useful for the development of high-performance heteronuclear and high-entropy SACs toward various catalytic reactions in the high-loading regime.</description><issn>2366-9608</issn><issn>2366-9608</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpNUE1LAzEUDKLYUnv1KDl62ZqPze7mWEq1QqFg7XnJZl_Kyn6ZZIv996a2iqd5zJsZmEHonpIZJYQ9ucaXM0ZYTCjn_AqNGU-SSCYku_53j9DUuQ8SDEEmGL1FIy6FYIEZo37XWnWAuq7aPd72oCtw0Q-aSuN1p8rTY2kMaO9w1-LN13EPLX6DctC-CsQ8wKHyR9wZvAIPtmsHXYOyeBusNeC57xq8UF7VR-fdHboxqnYwveAE7Z6X74tVtN68vC7m60jTjPiIx1wC1VynShijBJGSpqXghBUJY6kw2rBSMpGFVjGVKi0kmKxQRrAiJaLgE_R4zu1t9zmA83lTOR2Kqha6weWcMplkPCZxkM7OUm075yyYvLdVo-wxpyQ_DZ2fhs7_hg6Gh0v2UDRQ_sl_Z-XfnsN58g</recordid><startdate>20241117</startdate><enddate>20241117</enddate><creator>Yang, Tong</creator><creator>Ding, Keda</creator><creator>Zhou, Jun</creator><creator>Ma, Xiaoyang</creator><creator>Tan, Kay Chen</creator><creator>Wang, Ge</creator><creator>Huang, Haitao</creator><creator>Yang, Ming</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-0876-1221</orcidid></search><sort><creationdate>20241117</creationdate><title>Unravelling Species-Specific Loading Effects on Oxygen Reduction Activity of Heteronuclear Single Atom Catalysts</title><author>Yang, Tong ; Ding, Keda ; Zhou, Jun ; Ma, Xiaoyang ; Tan, Kay Chen ; Wang, Ge ; Huang, Haitao ; Yang, Ming</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c180t-3439e1c3c7a5ffa509917d5302b62275fcf2d9258020419a7b9ef8baf52b705b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Tong</creatorcontrib><creatorcontrib>Ding, Keda</creatorcontrib><creatorcontrib>Zhou, Jun</creatorcontrib><creatorcontrib>Ma, Xiaoyang</creatorcontrib><creatorcontrib>Tan, Kay Chen</creatorcontrib><creatorcontrib>Wang, Ge</creatorcontrib><creatorcontrib>Huang, Haitao</creatorcontrib><creatorcontrib>Yang, Ming</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Small methods</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Tong</au><au>Ding, Keda</au><au>Zhou, Jun</au><au>Ma, Xiaoyang</au><au>Tan, Kay Chen</au><au>Wang, Ge</au><au>Huang, Haitao</au><au>Yang, Ming</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Unravelling Species-Specific Loading Effects on Oxygen Reduction Activity of Heteronuclear Single Atom Catalysts</atitle><jtitle>Small methods</jtitle><addtitle>Small Methods</addtitle><date>2024-11-17</date><risdate>2024</risdate><spage>e2401333</spage><pages>e2401333-</pages><issn>2366-9608</issn><eissn>2366-9608</eissn><abstract>Toward high-density single atom catalysts (SACs), the interaction between neighboring SACs and the induced non-linear loading effect become crucial for their intrinsic catalytic performance. Despite recent investigations on homonuclear SACs, understanding such effect in heteronuclear SACs remains limited. Using Fe and Co SACs co-supported on the nitrogen-doped graphene as a model system, the loading effect on the site-specific activity of heteronuclear SACs toward oxygen reduction reaction (ORR) is here reported by density functional theory calculations. The Fe site exhibits an oscillatory decrease in activity with the loading. In contrast, the Co site has a volcano-like activity with the optimum performance achieved at ≈16.8 wt.% (average inter-site distance: ≈7 Å). At the ultra-high loading of 38.4 wt.% (inter-site distance: ≈4 Å), the Co site is the only ORR active site, whereas Fe sites turn into spectators. This distinct loading-dependent activity between the Fe and Co sites can be ascribed to their difference in the binding capability with the substrate and the d  and d orbitals' occupation. These findings highlight the importance of the loading effect in heteronuclear SACs, which could be useful for the development of high-performance heteronuclear and high-entropy SACs toward various catalytic reactions in the high-loading regime.</abstract><cop>Germany</cop><pmid>39552000</pmid><doi>10.1002/smtd.202401333</doi><orcidid>https://orcid.org/0000-0002-0876-1221</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2366-9608
ispartof Small methods, 2024-11, p.e2401333
issn 2366-9608
2366-9608
language eng
recordid cdi_proquest_miscellaneous_3129683404
source Access via Wiley Online Library
title Unravelling Species-Specific Loading Effects on Oxygen Reduction Activity of Heteronuclear Single Atom Catalysts
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T08%3A25%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Unravelling%20Species-Specific%20Loading%20Effects%20on%20Oxygen%20Reduction%20Activity%20of%20Heteronuclear%20Single%20Atom%20Catalysts&rft.jtitle=Small%20methods&rft.au=Yang,%20Tong&rft.date=2024-11-17&rft.spage=e2401333&rft.pages=e2401333-&rft.issn=2366-9608&rft.eissn=2366-9608&rft_id=info:doi/10.1002/smtd.202401333&rft_dat=%3Cproquest_cross%3E3129683404%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3129683404&rft_id=info:pmid/39552000&rfr_iscdi=true