Synergistic Coupling Effect and Anionic Modulation of CoFe LDH@MXene for Triggered and Sustained Alkaline Water/Seawater Electrolysis
The application of seawater splitting is crucial for hydrogen production; therefore, efficient electrocatalysts are necessary to prevent chlorine evolution and severe corrosion. A synergistic method is employed on CoFe LDH by integrating a conductive Ti 3 C 2 T x MXene layer and subsequently applyin...
Gespeichert in:
Veröffentlicht in: | Chemistry, an Asian journal an Asian journal, 2024-11, p.e202401295 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The application of seawater splitting is crucial for hydrogen production; therefore, efficient electrocatalysts are necessary to prevent chlorine evolution and severe corrosion. A synergistic method is employed on CoFe LDH by integrating a conductive Ti 3 C 2 T x MXene layer and subsequently applying anionic modulation. Robust metal‐substrate interaction along with subsequent phosphidation facilitates efficient electron transfer and optimises the electronic structure of Co and Fe sites. The CoFe−P−1000@Ti 3 C 2 T x /CC demonstrates commendable electrochemical performance, requiring overpotentials of 106.6 mV and 276 mV for the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) at 10 mA cm −2 in 1 M KOH electrolyte, while 292 mV is necessary for OER in a simulated seawater electrolyte (1 M KOH+0.5 M NaCl). Furthermore, the CoFe−P−1000@Ti 3 C 2 T x /CC exhibits an encouraging cell voltage of 1.59 V (j=10 mA cm −2 ) for comprehensive alkaline seawater splitting, maintaining exceptional stability for over 50 hours. |
---|---|
ISSN: | 1861-4728 1861-471X 1861-471X |
DOI: | 10.1002/asia.202401295 |