Modeling straight and circle swimmers: from single swimmer to collective motion

We propose a simple numerical model for the motion of microswimmers based on the immersed boundary method. The swimmer, either pusher or puller, is represented by a distribution of point forces corresponding to the body and the flagellum. We study in particular the minimal model consisting of only t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The European physical journal. E, Soft matter and biological physics Soft matter and biological physics, 2024-11, Vol.47 (11), p.65, Article 65
Hauptverfasser: Ventrella, Francesco Michele, Boffetta, Guido, Cencini, Massimo, De Lillo, Filippo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 11
container_start_page 65
container_title The European physical journal. E, Soft matter and biological physics
container_volume 47
creator Ventrella, Francesco Michele
Boffetta, Guido
Cencini, Massimo
De Lillo, Filippo
description We propose a simple numerical model for the motion of microswimmers based on the immersed boundary method. The swimmer, either pusher or puller, is represented by a distribution of point forces corresponding to the body and the flagellum. We study in particular the minimal model consisting of only three beads (two for the body and one for the flagellum) connected by rigid, inextensible links. When the beads are collinear, standard straight swimming is realized and, in the absence of propulsion, we demonstrate that the model recovers Jeffery’s equation for a thin rod. Conversely, by imposing an angle between body and flagellum the swimmer moves on circular orbits. We discuss how two swimmers, in collinear or non-collinear geometry, scatter upon encounter. Finally, we explore the dynamics of a large number of swimmers reacting to one another only via hydrodynamic interactions, and exemplify their complex collective dynamics in both straight and circular swimmers. Graphical abstract
doi_str_mv 10.1140/epje/s10189-024-00458-z
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3129681817</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3129636855</sourcerecordid><originalsourceid>FETCH-LOGICAL-c266t-dff8193a39b928d7351324cf463db9bb80382cefa2cac854423c226d370f8ee23</originalsourceid><addsrcrecordid>eNqFkF1LwzAUhoMobk7_gga88aYuH22XeifDL5jsRsG7kKYns6NtZtIq7teb2enAG68Skud9OedB6IySS0pjMobVEsaeEiqyiLA4IiRORLTeQ0PKMhaJLHnZ_73HdICOvF8SQkKWH6IBz5KECsGHaP5oC6jKZoF961S5eG2xagqsS6crwP6jrGtw_gobZ2vsA7d7xa3F2lYV6LZ8B1zbtrTNMTowqvJwsj1H6Pn25ml6H83mdw_T61mkWZq2UWGMoBlXPMszJooJTyhnsTZxyos8y3NBuGAajGJaaZHEMeOasbTgE2IEAOMjdNH3rpx968C3si69hqpSDdjOSx52TwUVdBLQ8z_o0nauCdP1FE9FkgRq0lPaWe8dGLlyZa3cp6REbpzLjXPZO5fBufx2Ltchebrt7_Iait_cj-QAiB7w4atZgNsN8F_3FzvgkTM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3129636855</pqid></control><display><type>article</type><title>Modeling straight and circle swimmers: from single swimmer to collective motion</title><source>Springer Nature - Complete Springer Journals</source><creator>Ventrella, Francesco Michele ; Boffetta, Guido ; Cencini, Massimo ; De Lillo, Filippo</creator><creatorcontrib>Ventrella, Francesco Michele ; Boffetta, Guido ; Cencini, Massimo ; De Lillo, Filippo</creatorcontrib><description>We propose a simple numerical model for the motion of microswimmers based on the immersed boundary method. The swimmer, either pusher or puller, is represented by a distribution of point forces corresponding to the body and the flagellum. We study in particular the minimal model consisting of only three beads (two for the body and one for the flagellum) connected by rigid, inextensible links. When the beads are collinear, standard straight swimming is realized and, in the absence of propulsion, we demonstrate that the model recovers Jeffery’s equation for a thin rod. Conversely, by imposing an angle between body and flagellum the swimmer moves on circular orbits. We discuss how two swimmers, in collinear or non-collinear geometry, scatter upon encounter. Finally, we explore the dynamics of a large number of swimmers reacting to one another only via hydrodynamic interactions, and exemplify their complex collective dynamics in both straight and circular swimmers. Graphical abstract</description><identifier>ISSN: 1292-8941</identifier><identifier>ISSN: 1292-895X</identifier><identifier>EISSN: 1292-895X</identifier><identifier>DOI: 10.1140/epje/s10189-024-00458-z</identifier><identifier>PMID: 39551883</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Biological and Medical Physics ; Biophysics ; Circular orbits ; Complex Fluids and Microfluidics ; Complex Systems ; Nanotechnology ; Numerical models ; Physics ; Physics and Astronomy ; Polymer Sciences ; Regular Article - Living Systems ; Soft and Granular Matter ; Surfaces and Interfaces ; Swimming ; Thin Films</subject><ispartof>The European physical journal. E, Soft matter and biological physics, 2024-11, Vol.47 (11), p.65, Article 65</ispartof><rights>The Author(s), under exclusive licence to EDP Sciences, SIF and Springer-Verlag GmbH Germany, part of Springer Nature 2024 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>2024. The Author(s), under exclusive licence to EDP Sciences, SIF and Springer-Verlag GmbH Germany, part of Springer Nature.</rights><rights>Copyright Springer Nature B.V. 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c266t-dff8193a39b928d7351324cf463db9bb80382cefa2cac854423c226d370f8ee23</cites><orcidid>0000-0002-2534-7751 ; 0000-0001-7073-5000 ; 0000-0002-1327-695X ; 0000-0001-7367-1444</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1140/epje/s10189-024-00458-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1140/epje/s10189-024-00458-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39551883$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ventrella, Francesco Michele</creatorcontrib><creatorcontrib>Boffetta, Guido</creatorcontrib><creatorcontrib>Cencini, Massimo</creatorcontrib><creatorcontrib>De Lillo, Filippo</creatorcontrib><title>Modeling straight and circle swimmers: from single swimmer to collective motion</title><title>The European physical journal. E, Soft matter and biological physics</title><addtitle>Eur. Phys. J. E</addtitle><addtitle>Eur Phys J E Soft Matter</addtitle><description>We propose a simple numerical model for the motion of microswimmers based on the immersed boundary method. The swimmer, either pusher or puller, is represented by a distribution of point forces corresponding to the body and the flagellum. We study in particular the minimal model consisting of only three beads (two for the body and one for the flagellum) connected by rigid, inextensible links. When the beads are collinear, standard straight swimming is realized and, in the absence of propulsion, we demonstrate that the model recovers Jeffery’s equation for a thin rod. Conversely, by imposing an angle between body and flagellum the swimmer moves on circular orbits. We discuss how two swimmers, in collinear or non-collinear geometry, scatter upon encounter. Finally, we explore the dynamics of a large number of swimmers reacting to one another only via hydrodynamic interactions, and exemplify their complex collective dynamics in both straight and circular swimmers. Graphical abstract</description><subject>Biological and Medical Physics</subject><subject>Biophysics</subject><subject>Circular orbits</subject><subject>Complex Fluids and Microfluidics</subject><subject>Complex Systems</subject><subject>Nanotechnology</subject><subject>Numerical models</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Polymer Sciences</subject><subject>Regular Article - Living Systems</subject><subject>Soft and Granular Matter</subject><subject>Surfaces and Interfaces</subject><subject>Swimming</subject><subject>Thin Films</subject><issn>1292-8941</issn><issn>1292-895X</issn><issn>1292-895X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkF1LwzAUhoMobk7_gga88aYuH22XeifDL5jsRsG7kKYns6NtZtIq7teb2enAG68Skud9OedB6IySS0pjMobVEsaeEiqyiLA4IiRORLTeQ0PKMhaJLHnZ_73HdICOvF8SQkKWH6IBz5KECsGHaP5oC6jKZoF961S5eG2xagqsS6crwP6jrGtw_gobZ2vsA7d7xa3F2lYV6LZ8B1zbtrTNMTowqvJwsj1H6Pn25ml6H83mdw_T61mkWZq2UWGMoBlXPMszJooJTyhnsTZxyos8y3NBuGAajGJaaZHEMeOasbTgE2IEAOMjdNH3rpx968C3si69hqpSDdjOSx52TwUVdBLQ8z_o0nauCdP1FE9FkgRq0lPaWe8dGLlyZa3cp6REbpzLjXPZO5fBufx2Ltchebrt7_Iait_cj-QAiB7w4atZgNsN8F_3FzvgkTM</recordid><startdate>20241118</startdate><enddate>20241118</enddate><creator>Ventrella, Francesco Michele</creator><creator>Boffetta, Guido</creator><creator>Cencini, Massimo</creator><creator>De Lillo, Filippo</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-2534-7751</orcidid><orcidid>https://orcid.org/0000-0001-7073-5000</orcidid><orcidid>https://orcid.org/0000-0002-1327-695X</orcidid><orcidid>https://orcid.org/0000-0001-7367-1444</orcidid></search><sort><creationdate>20241118</creationdate><title>Modeling straight and circle swimmers: from single swimmer to collective motion</title><author>Ventrella, Francesco Michele ; Boffetta, Guido ; Cencini, Massimo ; De Lillo, Filippo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c266t-dff8193a39b928d7351324cf463db9bb80382cefa2cac854423c226d370f8ee23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Biological and Medical Physics</topic><topic>Biophysics</topic><topic>Circular orbits</topic><topic>Complex Fluids and Microfluidics</topic><topic>Complex Systems</topic><topic>Nanotechnology</topic><topic>Numerical models</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Polymer Sciences</topic><topic>Regular Article - Living Systems</topic><topic>Soft and Granular Matter</topic><topic>Surfaces and Interfaces</topic><topic>Swimming</topic><topic>Thin Films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ventrella, Francesco Michele</creatorcontrib><creatorcontrib>Boffetta, Guido</creatorcontrib><creatorcontrib>Cencini, Massimo</creatorcontrib><creatorcontrib>De Lillo, Filippo</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>The European physical journal. E, Soft matter and biological physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ventrella, Francesco Michele</au><au>Boffetta, Guido</au><au>Cencini, Massimo</au><au>De Lillo, Filippo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modeling straight and circle swimmers: from single swimmer to collective motion</atitle><jtitle>The European physical journal. E, Soft matter and biological physics</jtitle><stitle>Eur. Phys. J. E</stitle><addtitle>Eur Phys J E Soft Matter</addtitle><date>2024-11-18</date><risdate>2024</risdate><volume>47</volume><issue>11</issue><spage>65</spage><pages>65-</pages><artnum>65</artnum><issn>1292-8941</issn><issn>1292-895X</issn><eissn>1292-895X</eissn><abstract>We propose a simple numerical model for the motion of microswimmers based on the immersed boundary method. The swimmer, either pusher or puller, is represented by a distribution of point forces corresponding to the body and the flagellum. We study in particular the minimal model consisting of only three beads (two for the body and one for the flagellum) connected by rigid, inextensible links. When the beads are collinear, standard straight swimming is realized and, in the absence of propulsion, we demonstrate that the model recovers Jeffery’s equation for a thin rod. Conversely, by imposing an angle between body and flagellum the swimmer moves on circular orbits. We discuss how two swimmers, in collinear or non-collinear geometry, scatter upon encounter. Finally, we explore the dynamics of a large number of swimmers reacting to one another only via hydrodynamic interactions, and exemplify their complex collective dynamics in both straight and circular swimmers. Graphical abstract</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>39551883</pmid><doi>10.1140/epje/s10189-024-00458-z</doi><orcidid>https://orcid.org/0000-0002-2534-7751</orcidid><orcidid>https://orcid.org/0000-0001-7073-5000</orcidid><orcidid>https://orcid.org/0000-0002-1327-695X</orcidid><orcidid>https://orcid.org/0000-0001-7367-1444</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1292-8941
ispartof The European physical journal. E, Soft matter and biological physics, 2024-11, Vol.47 (11), p.65, Article 65
issn 1292-8941
1292-895X
1292-895X
language eng
recordid cdi_proquest_miscellaneous_3129681817
source Springer Nature - Complete Springer Journals
subjects Biological and Medical Physics
Biophysics
Circular orbits
Complex Fluids and Microfluidics
Complex Systems
Nanotechnology
Numerical models
Physics
Physics and Astronomy
Polymer Sciences
Regular Article - Living Systems
Soft and Granular Matter
Surfaces and Interfaces
Swimming
Thin Films
title Modeling straight and circle swimmers: from single swimmer to collective motion
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T02%3A00%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modeling%20straight%20and%20circle%20swimmers:%20from%20single%20swimmer%20to%20collective%20motion&rft.jtitle=The%20European%20physical%20journal.%20E,%20Soft%20matter%20and%20biological%20physics&rft.au=Ventrella,%20Francesco%20Michele&rft.date=2024-11-18&rft.volume=47&rft.issue=11&rft.spage=65&rft.pages=65-&rft.artnum=65&rft.issn=1292-8941&rft.eissn=1292-895X&rft_id=info:doi/10.1140/epje/s10189-024-00458-z&rft_dat=%3Cproquest_cross%3E3129636855%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3129636855&rft_id=info:pmid/39551883&rfr_iscdi=true