Modeling straight and circle swimmers: from single swimmer to collective motion
We propose a simple numerical model for the motion of microswimmers based on the immersed boundary method. The swimmer, either pusher or puller, is represented by a distribution of point forces corresponding to the body and the flagellum. We study in particular the minimal model consisting of only t...
Gespeichert in:
Veröffentlicht in: | The European physical journal. E, Soft matter and biological physics Soft matter and biological physics, 2024-11, Vol.47 (11), p.65, Article 65 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 11 |
container_start_page | 65 |
container_title | The European physical journal. E, Soft matter and biological physics |
container_volume | 47 |
creator | Ventrella, Francesco Michele Boffetta, Guido Cencini, Massimo De Lillo, Filippo |
description | We propose a simple numerical model for the motion of microswimmers based on the immersed boundary method. The swimmer, either pusher or puller, is represented by a distribution of point forces corresponding to the body and the flagellum. We study in particular the minimal model consisting of only three beads (two for the body and one for the flagellum) connected by rigid, inextensible links. When the beads are collinear, standard straight swimming is realized and, in the absence of propulsion, we demonstrate that the model recovers Jeffery’s equation for a thin rod. Conversely, by imposing an angle between body and flagellum the swimmer moves on circular orbits. We discuss how two swimmers, in collinear or non-collinear geometry, scatter upon encounter. Finally, we explore the dynamics of a large number of swimmers reacting to one another only via hydrodynamic interactions, and exemplify their complex collective dynamics in both straight and circular swimmers.
Graphical abstract |
doi_str_mv | 10.1140/epje/s10189-024-00458-z |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3129681817</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3129636855</sourcerecordid><originalsourceid>FETCH-LOGICAL-c266t-dff8193a39b928d7351324cf463db9bb80382cefa2cac854423c226d370f8ee23</originalsourceid><addsrcrecordid>eNqFkF1LwzAUhoMobk7_gga88aYuH22XeifDL5jsRsG7kKYns6NtZtIq7teb2enAG68Skud9OedB6IySS0pjMobVEsaeEiqyiLA4IiRORLTeQ0PKMhaJLHnZ_73HdICOvF8SQkKWH6IBz5KECsGHaP5oC6jKZoF961S5eG2xagqsS6crwP6jrGtw_gobZ2vsA7d7xa3F2lYV6LZ8B1zbtrTNMTowqvJwsj1H6Pn25ml6H83mdw_T61mkWZq2UWGMoBlXPMszJooJTyhnsTZxyos8y3NBuGAajGJaaZHEMeOasbTgE2IEAOMjdNH3rpx968C3si69hqpSDdjOSx52TwUVdBLQ8z_o0nauCdP1FE9FkgRq0lPaWe8dGLlyZa3cp6REbpzLjXPZO5fBufx2Ltchebrt7_Iait_cj-QAiB7w4atZgNsN8F_3FzvgkTM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3129636855</pqid></control><display><type>article</type><title>Modeling straight and circle swimmers: from single swimmer to collective motion</title><source>Springer Nature - Complete Springer Journals</source><creator>Ventrella, Francesco Michele ; Boffetta, Guido ; Cencini, Massimo ; De Lillo, Filippo</creator><creatorcontrib>Ventrella, Francesco Michele ; Boffetta, Guido ; Cencini, Massimo ; De Lillo, Filippo</creatorcontrib><description>We propose a simple numerical model for the motion of microswimmers based on the immersed boundary method. The swimmer, either pusher or puller, is represented by a distribution of point forces corresponding to the body and the flagellum. We study in particular the minimal model consisting of only three beads (two for the body and one for the flagellum) connected by rigid, inextensible links. When the beads are collinear, standard straight swimming is realized and, in the absence of propulsion, we demonstrate that the model recovers Jeffery’s equation for a thin rod. Conversely, by imposing an angle between body and flagellum the swimmer moves on circular orbits. We discuss how two swimmers, in collinear or non-collinear geometry, scatter upon encounter. Finally, we explore the dynamics of a large number of swimmers reacting to one another only via hydrodynamic interactions, and exemplify their complex collective dynamics in both straight and circular swimmers.
Graphical abstract</description><identifier>ISSN: 1292-8941</identifier><identifier>ISSN: 1292-895X</identifier><identifier>EISSN: 1292-895X</identifier><identifier>DOI: 10.1140/epje/s10189-024-00458-z</identifier><identifier>PMID: 39551883</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Biological and Medical Physics ; Biophysics ; Circular orbits ; Complex Fluids and Microfluidics ; Complex Systems ; Nanotechnology ; Numerical models ; Physics ; Physics and Astronomy ; Polymer Sciences ; Regular Article - Living Systems ; Soft and Granular Matter ; Surfaces and Interfaces ; Swimming ; Thin Films</subject><ispartof>The European physical journal. E, Soft matter and biological physics, 2024-11, Vol.47 (11), p.65, Article 65</ispartof><rights>The Author(s), under exclusive licence to EDP Sciences, SIF and Springer-Verlag GmbH Germany, part of Springer Nature 2024 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>2024. The Author(s), under exclusive licence to EDP Sciences, SIF and Springer-Verlag GmbH Germany, part of Springer Nature.</rights><rights>Copyright Springer Nature B.V. 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c266t-dff8193a39b928d7351324cf463db9bb80382cefa2cac854423c226d370f8ee23</cites><orcidid>0000-0002-2534-7751 ; 0000-0001-7073-5000 ; 0000-0002-1327-695X ; 0000-0001-7367-1444</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1140/epje/s10189-024-00458-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1140/epje/s10189-024-00458-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39551883$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ventrella, Francesco Michele</creatorcontrib><creatorcontrib>Boffetta, Guido</creatorcontrib><creatorcontrib>Cencini, Massimo</creatorcontrib><creatorcontrib>De Lillo, Filippo</creatorcontrib><title>Modeling straight and circle swimmers: from single swimmer to collective motion</title><title>The European physical journal. E, Soft matter and biological physics</title><addtitle>Eur. Phys. J. E</addtitle><addtitle>Eur Phys J E Soft Matter</addtitle><description>We propose a simple numerical model for the motion of microswimmers based on the immersed boundary method. The swimmer, either pusher or puller, is represented by a distribution of point forces corresponding to the body and the flagellum. We study in particular the minimal model consisting of only three beads (two for the body and one for the flagellum) connected by rigid, inextensible links. When the beads are collinear, standard straight swimming is realized and, in the absence of propulsion, we demonstrate that the model recovers Jeffery’s equation for a thin rod. Conversely, by imposing an angle between body and flagellum the swimmer moves on circular orbits. We discuss how two swimmers, in collinear or non-collinear geometry, scatter upon encounter. Finally, we explore the dynamics of a large number of swimmers reacting to one another only via hydrodynamic interactions, and exemplify their complex collective dynamics in both straight and circular swimmers.
Graphical abstract</description><subject>Biological and Medical Physics</subject><subject>Biophysics</subject><subject>Circular orbits</subject><subject>Complex Fluids and Microfluidics</subject><subject>Complex Systems</subject><subject>Nanotechnology</subject><subject>Numerical models</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Polymer Sciences</subject><subject>Regular Article - Living Systems</subject><subject>Soft and Granular Matter</subject><subject>Surfaces and Interfaces</subject><subject>Swimming</subject><subject>Thin Films</subject><issn>1292-8941</issn><issn>1292-895X</issn><issn>1292-895X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkF1LwzAUhoMobk7_gga88aYuH22XeifDL5jsRsG7kKYns6NtZtIq7teb2enAG68Skud9OedB6IySS0pjMobVEsaeEiqyiLA4IiRORLTeQ0PKMhaJLHnZ_73HdICOvF8SQkKWH6IBz5KECsGHaP5oC6jKZoF961S5eG2xagqsS6crwP6jrGtw_gobZ2vsA7d7xa3F2lYV6LZ8B1zbtrTNMTowqvJwsj1H6Pn25ml6H83mdw_T61mkWZq2UWGMoBlXPMszJooJTyhnsTZxyos8y3NBuGAajGJaaZHEMeOasbTgE2IEAOMjdNH3rpx968C3si69hqpSDdjOSx52TwUVdBLQ8z_o0nauCdP1FE9FkgRq0lPaWe8dGLlyZa3cp6REbpzLjXPZO5fBufx2Ltchebrt7_Iait_cj-QAiB7w4atZgNsN8F_3FzvgkTM</recordid><startdate>20241118</startdate><enddate>20241118</enddate><creator>Ventrella, Francesco Michele</creator><creator>Boffetta, Guido</creator><creator>Cencini, Massimo</creator><creator>De Lillo, Filippo</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-2534-7751</orcidid><orcidid>https://orcid.org/0000-0001-7073-5000</orcidid><orcidid>https://orcid.org/0000-0002-1327-695X</orcidid><orcidid>https://orcid.org/0000-0001-7367-1444</orcidid></search><sort><creationdate>20241118</creationdate><title>Modeling straight and circle swimmers: from single swimmer to collective motion</title><author>Ventrella, Francesco Michele ; Boffetta, Guido ; Cencini, Massimo ; De Lillo, Filippo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c266t-dff8193a39b928d7351324cf463db9bb80382cefa2cac854423c226d370f8ee23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Biological and Medical Physics</topic><topic>Biophysics</topic><topic>Circular orbits</topic><topic>Complex Fluids and Microfluidics</topic><topic>Complex Systems</topic><topic>Nanotechnology</topic><topic>Numerical models</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Polymer Sciences</topic><topic>Regular Article - Living Systems</topic><topic>Soft and Granular Matter</topic><topic>Surfaces and Interfaces</topic><topic>Swimming</topic><topic>Thin Films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ventrella, Francesco Michele</creatorcontrib><creatorcontrib>Boffetta, Guido</creatorcontrib><creatorcontrib>Cencini, Massimo</creatorcontrib><creatorcontrib>De Lillo, Filippo</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>The European physical journal. E, Soft matter and biological physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ventrella, Francesco Michele</au><au>Boffetta, Guido</au><au>Cencini, Massimo</au><au>De Lillo, Filippo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modeling straight and circle swimmers: from single swimmer to collective motion</atitle><jtitle>The European physical journal. E, Soft matter and biological physics</jtitle><stitle>Eur. Phys. J. E</stitle><addtitle>Eur Phys J E Soft Matter</addtitle><date>2024-11-18</date><risdate>2024</risdate><volume>47</volume><issue>11</issue><spage>65</spage><pages>65-</pages><artnum>65</artnum><issn>1292-8941</issn><issn>1292-895X</issn><eissn>1292-895X</eissn><abstract>We propose a simple numerical model for the motion of microswimmers based on the immersed boundary method. The swimmer, either pusher or puller, is represented by a distribution of point forces corresponding to the body and the flagellum. We study in particular the minimal model consisting of only three beads (two for the body and one for the flagellum) connected by rigid, inextensible links. When the beads are collinear, standard straight swimming is realized and, in the absence of propulsion, we demonstrate that the model recovers Jeffery’s equation for a thin rod. Conversely, by imposing an angle between body and flagellum the swimmer moves on circular orbits. We discuss how two swimmers, in collinear or non-collinear geometry, scatter upon encounter. Finally, we explore the dynamics of a large number of swimmers reacting to one another only via hydrodynamic interactions, and exemplify their complex collective dynamics in both straight and circular swimmers.
Graphical abstract</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>39551883</pmid><doi>10.1140/epje/s10189-024-00458-z</doi><orcidid>https://orcid.org/0000-0002-2534-7751</orcidid><orcidid>https://orcid.org/0000-0001-7073-5000</orcidid><orcidid>https://orcid.org/0000-0002-1327-695X</orcidid><orcidid>https://orcid.org/0000-0001-7367-1444</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1292-8941 |
ispartof | The European physical journal. E, Soft matter and biological physics, 2024-11, Vol.47 (11), p.65, Article 65 |
issn | 1292-8941 1292-895X 1292-895X |
language | eng |
recordid | cdi_proquest_miscellaneous_3129681817 |
source | Springer Nature - Complete Springer Journals |
subjects | Biological and Medical Physics Biophysics Circular orbits Complex Fluids and Microfluidics Complex Systems Nanotechnology Numerical models Physics Physics and Astronomy Polymer Sciences Regular Article - Living Systems Soft and Granular Matter Surfaces and Interfaces Swimming Thin Films |
title | Modeling straight and circle swimmers: from single swimmer to collective motion |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T02%3A00%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modeling%20straight%20and%20circle%20swimmers:%20from%20single%20swimmer%20to%20collective%20motion&rft.jtitle=The%20European%20physical%20journal.%20E,%20Soft%20matter%20and%20biological%20physics&rft.au=Ventrella,%20Francesco%20Michele&rft.date=2024-11-18&rft.volume=47&rft.issue=11&rft.spage=65&rft.pages=65-&rft.artnum=65&rft.issn=1292-8941&rft.eissn=1292-895X&rft_id=info:doi/10.1140/epje/s10189-024-00458-z&rft_dat=%3Cproquest_cross%3E3129636855%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3129636855&rft_id=info:pmid/39551883&rfr_iscdi=true |