Magnetic field and photon co-enhanced S-scheme MXene/In2S3/CoFe2O4 heterojunction for high-performance lithium-oxygen batteries

[Display omitted] Under the spotlight for their potential to reduce over-potential, photo-assisted Li–O2 batteries still face a key challenge: the rapid recombination of photo-generated electron-hole pairs, which limits their efficiency. In this study, we address this limitation by designing a Li–O2...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of colloid and interface science 2025-02, Vol.680 (Pt A), p.911-927
Hauptverfasser: Xiao, Na, Han, Ping, Chen, Zhaoqi, Chen, Qiuling
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 927
container_issue Pt A
container_start_page 911
container_title Journal of colloid and interface science
container_volume 680
creator Xiao, Na
Han, Ping
Chen, Zhaoqi
Chen, Qiuling
description [Display omitted] Under the spotlight for their potential to reduce over-potential, photo-assisted Li–O2 batteries still face a key challenge: the rapid recombination of photo-generated electron-hole pairs, which limits their efficiency. In this study, we address this limitation by designing a Li–O2 battery that integrates both photo and magnetic field assistance, using an S-scheme MXene/In2S3/CoFe2O4 heterojunction photocathode. This unique combination enhances visible light absorption and generates a strong built-in electric field, facilitating effective charge separation and boosting photocatalytic activity. During discharge, photo-generated electrons participate in the oxygen reduction reaction, while photo-induced holes contribute to the decomposition of discharge products during charging. Furthermore, the introduction of a magnetic field, confirmed through vibrating sample magnetometer, Mössbauer spectroscopy, X-ray absorption near edge structure, and cyclic voltammetry analyses, enhances electron-hole separation via Lorentz forces and spin–orbit coupling, accelerating the formation and decomposition of Li2O2. With this synergistic approach, the battery achieves a high specific capacity of 26,500 mAh g−1, ultra-low oxygen reduction/evolution reaction over-potentials of 0.08 V/0.17 V, and a long cycle life of 2000 cycles with energy efficiency of 98.11 %. This work demonstrates the promising potential of combining photo and magnetic field effects to improve the electrochemical performance of Li–O2 batteries, opening new avenues for high-performance energy storage systems.
doi_str_mv 10.1016/j.jcis.2024.11.062
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3129221133</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021979724026389</els_id><sourcerecordid>3129221133</sourcerecordid><originalsourceid>FETCH-LOGICAL-c214t-9eaac53ae60def2e2ef82f7da9afa146e621d42978c44d07f16fd74f905f319a3</originalsourceid><addsrcrecordid>eNp9kDtrHDEUhUVIIBvHfyCVyjSa1dW8LEhjlvgBNi4cgzuhSFc7GmaktaQNceW_7hk2dap7ivMduB8h34BXwKHbjtVofK4EF00FUPFOfCAb4LJlPfD6I9lwLoDJXvafyZecR84B2lZuyNu93gcs3lDncbJUB0sPQywxUBMZhkEHg5Y-smwGnJHeP2PA7W0Qj_V2F69QPDR0wIIpjsdgil84FxMd_H5gB0xLntcFOvky-OPM4t_XPQb6W5eF8Zi_kk9OTxnP_90z8nT189fuht09XN_uLu-YEdAUJlFr09YaO27RCRToLoTrrZbaaWg67ATYRsj-wjSN5b2Dztm-cZK3rgap6zPy_bR7SPHliLmo2WeD06QDxmNWNQgpBEBdL1VxqpoUc07o1CH5WadXBVytttWoVttqta0A1GJ7gX6cIFye-OMxqWw8ru58QlOUjf5_-DscV4pp</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3129221133</pqid></control><display><type>article</type><title>Magnetic field and photon co-enhanced S-scheme MXene/In2S3/CoFe2O4 heterojunction for high-performance lithium-oxygen batteries</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Xiao, Na ; Han, Ping ; Chen, Zhaoqi ; Chen, Qiuling</creator><creatorcontrib>Xiao, Na ; Han, Ping ; Chen, Zhaoqi ; Chen, Qiuling</creatorcontrib><description>[Display omitted] Under the spotlight for their potential to reduce over-potential, photo-assisted Li–O2 batteries still face a key challenge: the rapid recombination of photo-generated electron-hole pairs, which limits their efficiency. In this study, we address this limitation by designing a Li–O2 battery that integrates both photo and magnetic field assistance, using an S-scheme MXene/In2S3/CoFe2O4 heterojunction photocathode. This unique combination enhances visible light absorption and generates a strong built-in electric field, facilitating effective charge separation and boosting photocatalytic activity. During discharge, photo-generated electrons participate in the oxygen reduction reaction, while photo-induced holes contribute to the decomposition of discharge products during charging. Furthermore, the introduction of a magnetic field, confirmed through vibrating sample magnetometer, Mössbauer spectroscopy, X-ray absorption near edge structure, and cyclic voltammetry analyses, enhances electron-hole separation via Lorentz forces and spin–orbit coupling, accelerating the formation and decomposition of Li2O2. With this synergistic approach, the battery achieves a high specific capacity of 26,500 mAh g−1, ultra-low oxygen reduction/evolution reaction over-potentials of 0.08 V/0.17 V, and a long cycle life of 2000 cycles with energy efficiency of 98.11 %. This work demonstrates the promising potential of combining photo and magnetic field effects to improve the electrochemical performance of Li–O2 batteries, opening new avenues for high-performance energy storage systems.</description><identifier>ISSN: 0021-9797</identifier><identifier>ISSN: 1095-7103</identifier><identifier>EISSN: 1095-7103</identifier><identifier>DOI: 10.1016/j.jcis.2024.11.062</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>Li-O2 battery ; Magnetic field and photo-assisted ; MXene/In2S3/CoFe2O4 ; S-scheme</subject><ispartof>Journal of colloid and interface science, 2025-02, Vol.680 (Pt A), p.911-927</ispartof><rights>2024 Elsevier Inc.</rights><rights>Copyright © 2024 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c214t-9eaac53ae60def2e2ef82f7da9afa146e621d42978c44d07f16fd74f905f319a3</cites><orcidid>0000-0002-7547-066X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jcis.2024.11.062$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3548,27923,27924,45994</link.rule.ids></links><search><creatorcontrib>Xiao, Na</creatorcontrib><creatorcontrib>Han, Ping</creatorcontrib><creatorcontrib>Chen, Zhaoqi</creatorcontrib><creatorcontrib>Chen, Qiuling</creatorcontrib><title>Magnetic field and photon co-enhanced S-scheme MXene/In2S3/CoFe2O4 heterojunction for high-performance lithium-oxygen batteries</title><title>Journal of colloid and interface science</title><description>[Display omitted] Under the spotlight for their potential to reduce over-potential, photo-assisted Li–O2 batteries still face a key challenge: the rapid recombination of photo-generated electron-hole pairs, which limits their efficiency. In this study, we address this limitation by designing a Li–O2 battery that integrates both photo and magnetic field assistance, using an S-scheme MXene/In2S3/CoFe2O4 heterojunction photocathode. This unique combination enhances visible light absorption and generates a strong built-in electric field, facilitating effective charge separation and boosting photocatalytic activity. During discharge, photo-generated electrons participate in the oxygen reduction reaction, while photo-induced holes contribute to the decomposition of discharge products during charging. Furthermore, the introduction of a magnetic field, confirmed through vibrating sample magnetometer, Mössbauer spectroscopy, X-ray absorption near edge structure, and cyclic voltammetry analyses, enhances electron-hole separation via Lorentz forces and spin–orbit coupling, accelerating the formation and decomposition of Li2O2. With this synergistic approach, the battery achieves a high specific capacity of 26,500 mAh g−1, ultra-low oxygen reduction/evolution reaction over-potentials of 0.08 V/0.17 V, and a long cycle life of 2000 cycles with energy efficiency of 98.11 %. This work demonstrates the promising potential of combining photo and magnetic field effects to improve the electrochemical performance of Li–O2 batteries, opening new avenues for high-performance energy storage systems.</description><subject>Li-O2 battery</subject><subject>Magnetic field and photo-assisted</subject><subject>MXene/In2S3/CoFe2O4</subject><subject>S-scheme</subject><issn>0021-9797</issn><issn>1095-7103</issn><issn>1095-7103</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><recordid>eNp9kDtrHDEUhUVIIBvHfyCVyjSa1dW8LEhjlvgBNi4cgzuhSFc7GmaktaQNceW_7hk2dap7ivMduB8h34BXwKHbjtVofK4EF00FUPFOfCAb4LJlPfD6I9lwLoDJXvafyZecR84B2lZuyNu93gcs3lDncbJUB0sPQywxUBMZhkEHg5Y-smwGnJHeP2PA7W0Qj_V2F69QPDR0wIIpjsdgil84FxMd_H5gB0xLntcFOvky-OPM4t_XPQb6W5eF8Zi_kk9OTxnP_90z8nT189fuht09XN_uLu-YEdAUJlFr09YaO27RCRToLoTrrZbaaWg67ATYRsj-wjSN5b2Dztm-cZK3rgap6zPy_bR7SPHliLmo2WeD06QDxmNWNQgpBEBdL1VxqpoUc07o1CH5WadXBVytttWoVttqta0A1GJ7gX6cIFye-OMxqWw8ru58QlOUjf5_-DscV4pp</recordid><startdate>20250215</startdate><enddate>20250215</enddate><creator>Xiao, Na</creator><creator>Han, Ping</creator><creator>Chen, Zhaoqi</creator><creator>Chen, Qiuling</creator><general>Elsevier Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-7547-066X</orcidid></search><sort><creationdate>20250215</creationdate><title>Magnetic field and photon co-enhanced S-scheme MXene/In2S3/CoFe2O4 heterojunction for high-performance lithium-oxygen batteries</title><author>Xiao, Na ; Han, Ping ; Chen, Zhaoqi ; Chen, Qiuling</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c214t-9eaac53ae60def2e2ef82f7da9afa146e621d42978c44d07f16fd74f905f319a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>Li-O2 battery</topic><topic>Magnetic field and photo-assisted</topic><topic>MXene/In2S3/CoFe2O4</topic><topic>S-scheme</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xiao, Na</creatorcontrib><creatorcontrib>Han, Ping</creatorcontrib><creatorcontrib>Chen, Zhaoqi</creatorcontrib><creatorcontrib>Chen, Qiuling</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of colloid and interface science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xiao, Na</au><au>Han, Ping</au><au>Chen, Zhaoqi</au><au>Chen, Qiuling</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Magnetic field and photon co-enhanced S-scheme MXene/In2S3/CoFe2O4 heterojunction for high-performance lithium-oxygen batteries</atitle><jtitle>Journal of colloid and interface science</jtitle><date>2025-02-15</date><risdate>2025</risdate><volume>680</volume><issue>Pt A</issue><spage>911</spage><epage>927</epage><pages>911-927</pages><issn>0021-9797</issn><issn>1095-7103</issn><eissn>1095-7103</eissn><abstract>[Display omitted] Under the spotlight for their potential to reduce over-potential, photo-assisted Li–O2 batteries still face a key challenge: the rapid recombination of photo-generated electron-hole pairs, which limits their efficiency. In this study, we address this limitation by designing a Li–O2 battery that integrates both photo and magnetic field assistance, using an S-scheme MXene/In2S3/CoFe2O4 heterojunction photocathode. This unique combination enhances visible light absorption and generates a strong built-in electric field, facilitating effective charge separation and boosting photocatalytic activity. During discharge, photo-generated electrons participate in the oxygen reduction reaction, while photo-induced holes contribute to the decomposition of discharge products during charging. Furthermore, the introduction of a magnetic field, confirmed through vibrating sample magnetometer, Mössbauer spectroscopy, X-ray absorption near edge structure, and cyclic voltammetry analyses, enhances electron-hole separation via Lorentz forces and spin–orbit coupling, accelerating the formation and decomposition of Li2O2. With this synergistic approach, the battery achieves a high specific capacity of 26,500 mAh g−1, ultra-low oxygen reduction/evolution reaction over-potentials of 0.08 V/0.17 V, and a long cycle life of 2000 cycles with energy efficiency of 98.11 %. This work demonstrates the promising potential of combining photo and magnetic field effects to improve the electrochemical performance of Li–O2 batteries, opening new avenues for high-performance energy storage systems.</abstract><pub>Elsevier Inc</pub><doi>10.1016/j.jcis.2024.11.062</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-7547-066X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0021-9797
ispartof Journal of colloid and interface science, 2025-02, Vol.680 (Pt A), p.911-927
issn 0021-9797
1095-7103
1095-7103
language eng
recordid cdi_proquest_miscellaneous_3129221133
source ScienceDirect Journals (5 years ago - present)
subjects Li-O2 battery
Magnetic field and photo-assisted
MXene/In2S3/CoFe2O4
S-scheme
title Magnetic field and photon co-enhanced S-scheme MXene/In2S3/CoFe2O4 heterojunction for high-performance lithium-oxygen batteries
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T03%3A13%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Magnetic%20field%20and%20photon%20co-enhanced%20S-scheme%20MXene/In2S3/CoFe2O4%20heterojunction%20for%20high-performance%20lithium-oxygen%20batteries&rft.jtitle=Journal%20of%20colloid%20and%20interface%20science&rft.au=Xiao,%20Na&rft.date=2025-02-15&rft.volume=680&rft.issue=Pt%20A&rft.spage=911&rft.epage=927&rft.pages=911-927&rft.issn=0021-9797&rft.eissn=1095-7103&rft_id=info:doi/10.1016/j.jcis.2024.11.062&rft_dat=%3Cproquest_cross%3E3129221133%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3129221133&rft_id=info:pmid/&rft_els_id=S0021979724026389&rfr_iscdi=true