Engineered bacterial lipoate protein ligase A (lplA) restores lipoylation in cell models of lipoylation deficiency

Protein lipoylation, a vital lysine post-translational modification, plays a crucial role in the function of key mitochondrial tricarboxylic acid cycle enzymatic complexes. In eukaryotes, lipoyl post-translational modification synthesis occurs exclusively through de novo pathways, relying on lipoyl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of biological chemistry 2024-11, Vol.300 (12), p.107995, Article 107995
Hauptverfasser: Bick, Nolan R., Dreishpoon, Margaret B., Perry, Ava, Rogachevskaya, Anna, Bottomley, Sylvia S., Fleming, Mark D., Ducamp, Sarah, Tsvetkov, Peter
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 12
container_start_page 107995
container_title The Journal of biological chemistry
container_volume 300
creator Bick, Nolan R.
Dreishpoon, Margaret B.
Perry, Ava
Rogachevskaya, Anna
Bottomley, Sylvia S.
Fleming, Mark D.
Ducamp, Sarah
Tsvetkov, Peter
description Protein lipoylation, a vital lysine post-translational modification, plays a crucial role in the function of key mitochondrial tricarboxylic acid cycle enzymatic complexes. In eukaryotes, lipoyl post-translational modification synthesis occurs exclusively through de novo pathways, relying on lipoyl synthesis/transfer enzymes, dependent upon mitochondrial fatty acid and Fe–S cluster biosynthesis. Dysregulation in any of these pathways leads to diminished cellular lipoylation. Efficient restoration of lipoylation in lipoylation deficiency cell states using either chemical or genetic approaches has been challenging because of pathway complexity and multiple upstream regulators. To address this challenge, we explored the possibility that a bacterial lipoate protein ligase A (lplA) enzyme, which can salvage free lipoic acid bypassing the dependency on de novo synthesis, could be engineered to be functional in human cells. Overexpression of the engineered lplA in lipoylation null cells restored lipoylation levels, cellular respiration, and growth in low glucose conditions. Engineered lplA restored lipoylation in all tested lipoylation null cell models, mimicking defects in mitochondrial fatty acid synthesis (MECR KO), Fe–S cluster biosynthesis (BOLA3 KO), and specific lipoylation-regulating enzymes (FDX1 [ferredoxin 1], LIAS [lipoyl synthase], and LIPT1 [lipoyl (octanoyl) transferase 1] KOs). Furthermore, we describe a patient with a homozygous c.212C>T variant LIPT1 with a previously uncharacterized syndromic congenital sideroblastic anemia. K562 erythroleukemia cells engineered to harbor this missense LIPT1 allele recapitulate the lipoylation-deficient phenotype and exhibit impaired proliferation in low glucose that is completely restored by engineered lplA. This synthetic approach offers a potential therapeutic strategy for treating lipoylation disorders.
doi_str_mv 10.1016/j.jbc.2024.107995
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_3128980807</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021925824024979</els_id><sourcerecordid>3128980807</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2421-9ec7284c34d8b15c529f4dbd626fc5bf60bf3b65c412b040a62b955bebaffb683</originalsourceid><addsrcrecordid>eNp9kU1vEzEQhi0EoqHwA7ggH8shwfba3rU4oKgqFKkSF5C4Wf4YB0fOerE3lfLv6zSlai_4YGs0z7yemReh95SsKKHy03a1tW7FCOMt7pUSL9CCkqFbdoL-fokWhDC6VEwMZ-hNrVvSDlf0NTrrlOC9IGqBytW4iSNAAY-tcTOUaBJOccpmBjyVPEMcW7wxFfAaX6QprT_iAnXO7boHD8nMMY-4cQ5SwrvsIVWcw7OshxBdhNEd3qJXwaQK7x7ec_Tr69XPy-vlzY9v3y_XN0vH-LFvcD0buOu4HywVTjAVuLdeMhmcsEESGzorheOUWcKJkcwqISxYE4KVQ3eOvpx0p73dgXcwzsUkPZW4M-Wgs4n6eWaMf_Qm32pKpRSyF03h4kGh5L_7NrPexXqc0YyQ91V3lA1qIAPpG0pPqCu51gLh8R9K9NEsvdXNLH00S5_MajUfnjb4WPHPnQZ8PgFtn3Aboeh6v0LwsYCbtc_xP_J3IPGoAg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3128980807</pqid></control><display><type>article</type><title>Engineered bacterial lipoate protein ligase A (lplA) restores lipoylation in cell models of lipoylation deficiency</title><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Bick, Nolan R. ; Dreishpoon, Margaret B. ; Perry, Ava ; Rogachevskaya, Anna ; Bottomley, Sylvia S. ; Fleming, Mark D. ; Ducamp, Sarah ; Tsvetkov, Peter</creator><creatorcontrib>Bick, Nolan R. ; Dreishpoon, Margaret B. ; Perry, Ava ; Rogachevskaya, Anna ; Bottomley, Sylvia S. ; Fleming, Mark D. ; Ducamp, Sarah ; Tsvetkov, Peter</creatorcontrib><description>Protein lipoylation, a vital lysine post-translational modification, plays a crucial role in the function of key mitochondrial tricarboxylic acid cycle enzymatic complexes. In eukaryotes, lipoyl post-translational modification synthesis occurs exclusively through de novo pathways, relying on lipoyl synthesis/transfer enzymes, dependent upon mitochondrial fatty acid and Fe–S cluster biosynthesis. Dysregulation in any of these pathways leads to diminished cellular lipoylation. Efficient restoration of lipoylation in lipoylation deficiency cell states using either chemical or genetic approaches has been challenging because of pathway complexity and multiple upstream regulators. To address this challenge, we explored the possibility that a bacterial lipoate protein ligase A (lplA) enzyme, which can salvage free lipoic acid bypassing the dependency on de novo synthesis, could be engineered to be functional in human cells. Overexpression of the engineered lplA in lipoylation null cells restored lipoylation levels, cellular respiration, and growth in low glucose conditions. Engineered lplA restored lipoylation in all tested lipoylation null cell models, mimicking defects in mitochondrial fatty acid synthesis (MECR KO), Fe–S cluster biosynthesis (BOLA3 KO), and specific lipoylation-regulating enzymes (FDX1 [ferredoxin 1], LIAS [lipoyl synthase], and LIPT1 [lipoyl (octanoyl) transferase 1] KOs). Furthermore, we describe a patient with a homozygous c.212C&gt;T variant LIPT1 with a previously uncharacterized syndromic congenital sideroblastic anemia. K562 erythroleukemia cells engineered to harbor this missense LIPT1 allele recapitulate the lipoylation-deficient phenotype and exhibit impaired proliferation in low glucose that is completely restored by engineered lplA. This synthetic approach offers a potential therapeutic strategy for treating lipoylation disorders.</description><identifier>ISSN: 0021-9258</identifier><identifier>ISSN: 1083-351X</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1016/j.jbc.2024.107995</identifier><identifier>PMID: 39547509</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>anemia ; gene therapy ; lipid metabolism ; lipoic acid ; lipoylation ; LIPT1 ; metabolic disease ; mitochondria ; tricarboxylic acid cycle</subject><ispartof>The Journal of biological chemistry, 2024-11, Vol.300 (12), p.107995, Article 107995</ispartof><rights>2024 The Authors</rights><rights>Copyright © 2024 The Authors. Published by Elsevier Inc. All rights reserved.</rights><rights>2024 The Authors 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2421-9ec7284c34d8b15c529f4dbd626fc5bf60bf3b65c412b040a62b955bebaffb683</cites><orcidid>0000-0002-7577-2342 ; 0000-0001-8963-7304 ; 0000-0002-4432-6673</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11665675/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11665675/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39547509$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bick, Nolan R.</creatorcontrib><creatorcontrib>Dreishpoon, Margaret B.</creatorcontrib><creatorcontrib>Perry, Ava</creatorcontrib><creatorcontrib>Rogachevskaya, Anna</creatorcontrib><creatorcontrib>Bottomley, Sylvia S.</creatorcontrib><creatorcontrib>Fleming, Mark D.</creatorcontrib><creatorcontrib>Ducamp, Sarah</creatorcontrib><creatorcontrib>Tsvetkov, Peter</creatorcontrib><title>Engineered bacterial lipoate protein ligase A (lplA) restores lipoylation in cell models of lipoylation deficiency</title><title>The Journal of biological chemistry</title><addtitle>J Biol Chem</addtitle><description>Protein lipoylation, a vital lysine post-translational modification, plays a crucial role in the function of key mitochondrial tricarboxylic acid cycle enzymatic complexes. In eukaryotes, lipoyl post-translational modification synthesis occurs exclusively through de novo pathways, relying on lipoyl synthesis/transfer enzymes, dependent upon mitochondrial fatty acid and Fe–S cluster biosynthesis. Dysregulation in any of these pathways leads to diminished cellular lipoylation. Efficient restoration of lipoylation in lipoylation deficiency cell states using either chemical or genetic approaches has been challenging because of pathway complexity and multiple upstream regulators. To address this challenge, we explored the possibility that a bacterial lipoate protein ligase A (lplA) enzyme, which can salvage free lipoic acid bypassing the dependency on de novo synthesis, could be engineered to be functional in human cells. Overexpression of the engineered lplA in lipoylation null cells restored lipoylation levels, cellular respiration, and growth in low glucose conditions. Engineered lplA restored lipoylation in all tested lipoylation null cell models, mimicking defects in mitochondrial fatty acid synthesis (MECR KO), Fe–S cluster biosynthesis (BOLA3 KO), and specific lipoylation-regulating enzymes (FDX1 [ferredoxin 1], LIAS [lipoyl synthase], and LIPT1 [lipoyl (octanoyl) transferase 1] KOs). Furthermore, we describe a patient with a homozygous c.212C&gt;T variant LIPT1 with a previously uncharacterized syndromic congenital sideroblastic anemia. K562 erythroleukemia cells engineered to harbor this missense LIPT1 allele recapitulate the lipoylation-deficient phenotype and exhibit impaired proliferation in low glucose that is completely restored by engineered lplA. This synthetic approach offers a potential therapeutic strategy for treating lipoylation disorders.</description><subject>anemia</subject><subject>gene therapy</subject><subject>lipid metabolism</subject><subject>lipoic acid</subject><subject>lipoylation</subject><subject>LIPT1</subject><subject>metabolic disease</subject><subject>mitochondria</subject><subject>tricarboxylic acid cycle</subject><issn>0021-9258</issn><issn>1083-351X</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kU1vEzEQhi0EoqHwA7ggH8shwfba3rU4oKgqFKkSF5C4Wf4YB0fOerE3lfLv6zSlai_4YGs0z7yemReh95SsKKHy03a1tW7FCOMt7pUSL9CCkqFbdoL-fokWhDC6VEwMZ-hNrVvSDlf0NTrrlOC9IGqBytW4iSNAAY-tcTOUaBJOccpmBjyVPEMcW7wxFfAaX6QprT_iAnXO7boHD8nMMY-4cQ5SwrvsIVWcw7OshxBdhNEd3qJXwaQK7x7ec_Tr69XPy-vlzY9v3y_XN0vH-LFvcD0buOu4HywVTjAVuLdeMhmcsEESGzorheOUWcKJkcwqISxYE4KVQ3eOvpx0p73dgXcwzsUkPZW4M-Wgs4n6eWaMf_Qm32pKpRSyF03h4kGh5L_7NrPexXqc0YyQ91V3lA1qIAPpG0pPqCu51gLh8R9K9NEsvdXNLH00S5_MajUfnjb4WPHPnQZ8PgFtn3Aboeh6v0LwsYCbtc_xP_J3IPGoAg</recordid><startdate>20241114</startdate><enddate>20241114</enddate><creator>Bick, Nolan R.</creator><creator>Dreishpoon, Margaret B.</creator><creator>Perry, Ava</creator><creator>Rogachevskaya, Anna</creator><creator>Bottomley, Sylvia S.</creator><creator>Fleming, Mark D.</creator><creator>Ducamp, Sarah</creator><creator>Tsvetkov, Peter</creator><general>Elsevier Inc</general><general>American Society for Biochemistry and Molecular Biology</general><scope>6I.</scope><scope>AAFTH</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-7577-2342</orcidid><orcidid>https://orcid.org/0000-0001-8963-7304</orcidid><orcidid>https://orcid.org/0000-0002-4432-6673</orcidid></search><sort><creationdate>20241114</creationdate><title>Engineered bacterial lipoate protein ligase A (lplA) restores lipoylation in cell models of lipoylation deficiency</title><author>Bick, Nolan R. ; Dreishpoon, Margaret B. ; Perry, Ava ; Rogachevskaya, Anna ; Bottomley, Sylvia S. ; Fleming, Mark D. ; Ducamp, Sarah ; Tsvetkov, Peter</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2421-9ec7284c34d8b15c529f4dbd626fc5bf60bf3b65c412b040a62b955bebaffb683</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>anemia</topic><topic>gene therapy</topic><topic>lipid metabolism</topic><topic>lipoic acid</topic><topic>lipoylation</topic><topic>LIPT1</topic><topic>metabolic disease</topic><topic>mitochondria</topic><topic>tricarboxylic acid cycle</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bick, Nolan R.</creatorcontrib><creatorcontrib>Dreishpoon, Margaret B.</creatorcontrib><creatorcontrib>Perry, Ava</creatorcontrib><creatorcontrib>Rogachevskaya, Anna</creatorcontrib><creatorcontrib>Bottomley, Sylvia S.</creatorcontrib><creatorcontrib>Fleming, Mark D.</creatorcontrib><creatorcontrib>Ducamp, Sarah</creatorcontrib><creatorcontrib>Tsvetkov, Peter</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bick, Nolan R.</au><au>Dreishpoon, Margaret B.</au><au>Perry, Ava</au><au>Rogachevskaya, Anna</au><au>Bottomley, Sylvia S.</au><au>Fleming, Mark D.</au><au>Ducamp, Sarah</au><au>Tsvetkov, Peter</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Engineered bacterial lipoate protein ligase A (lplA) restores lipoylation in cell models of lipoylation deficiency</atitle><jtitle>The Journal of biological chemistry</jtitle><addtitle>J Biol Chem</addtitle><date>2024-11-14</date><risdate>2024</risdate><volume>300</volume><issue>12</issue><spage>107995</spage><pages>107995-</pages><artnum>107995</artnum><issn>0021-9258</issn><issn>1083-351X</issn><eissn>1083-351X</eissn><abstract>Protein lipoylation, a vital lysine post-translational modification, plays a crucial role in the function of key mitochondrial tricarboxylic acid cycle enzymatic complexes. In eukaryotes, lipoyl post-translational modification synthesis occurs exclusively through de novo pathways, relying on lipoyl synthesis/transfer enzymes, dependent upon mitochondrial fatty acid and Fe–S cluster biosynthesis. Dysregulation in any of these pathways leads to diminished cellular lipoylation. Efficient restoration of lipoylation in lipoylation deficiency cell states using either chemical or genetic approaches has been challenging because of pathway complexity and multiple upstream regulators. To address this challenge, we explored the possibility that a bacterial lipoate protein ligase A (lplA) enzyme, which can salvage free lipoic acid bypassing the dependency on de novo synthesis, could be engineered to be functional in human cells. Overexpression of the engineered lplA in lipoylation null cells restored lipoylation levels, cellular respiration, and growth in low glucose conditions. Engineered lplA restored lipoylation in all tested lipoylation null cell models, mimicking defects in mitochondrial fatty acid synthesis (MECR KO), Fe–S cluster biosynthesis (BOLA3 KO), and specific lipoylation-regulating enzymes (FDX1 [ferredoxin 1], LIAS [lipoyl synthase], and LIPT1 [lipoyl (octanoyl) transferase 1] KOs). Furthermore, we describe a patient with a homozygous c.212C&gt;T variant LIPT1 with a previously uncharacterized syndromic congenital sideroblastic anemia. K562 erythroleukemia cells engineered to harbor this missense LIPT1 allele recapitulate the lipoylation-deficient phenotype and exhibit impaired proliferation in low glucose that is completely restored by engineered lplA. This synthetic approach offers a potential therapeutic strategy for treating lipoylation disorders.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>39547509</pmid><doi>10.1016/j.jbc.2024.107995</doi><orcidid>https://orcid.org/0000-0002-7577-2342</orcidid><orcidid>https://orcid.org/0000-0001-8963-7304</orcidid><orcidid>https://orcid.org/0000-0002-4432-6673</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9258
ispartof The Journal of biological chemistry, 2024-11, Vol.300 (12), p.107995, Article 107995
issn 0021-9258
1083-351X
1083-351X
language eng
recordid cdi_proquest_miscellaneous_3128980807
source DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection
subjects anemia
gene therapy
lipid metabolism
lipoic acid
lipoylation
LIPT1
metabolic disease
mitochondria
tricarboxylic acid cycle
title Engineered bacterial lipoate protein ligase A (lplA) restores lipoylation in cell models of lipoylation deficiency
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T01%3A21%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Engineered%20bacterial%20lipoate%20protein%20ligase%20A%20(lplA)%20restores%20lipoylation%20in%20cell%20models%20of%20lipoylation%20deficiency&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=Bick,%20Nolan%20R.&rft.date=2024-11-14&rft.volume=300&rft.issue=12&rft.spage=107995&rft.pages=107995-&rft.artnum=107995&rft.issn=0021-9258&rft.eissn=1083-351X&rft_id=info:doi/10.1016/j.jbc.2024.107995&rft_dat=%3Cproquest_pubme%3E3128980807%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3128980807&rft_id=info:pmid/39547509&rft_els_id=S0021925824024979&rfr_iscdi=true