Revealing the off-flavors in hydro-distilled essential oils of sweet orange (Citrus sinensis) by flavoromics strategy and computational simulation
Citrus essential oils (EOs) are renowned for their aroma, but thermal extraction methods can introduce undesirable cooking and pungent odors. The specific compounds responsible for these off-flavors and their perception mechanisms remain unclear. This study investigated the flavor differences betwee...
Gespeichert in:
Veröffentlicht in: | Food chemistry 2025-02, Vol.465 (Pt 1), p.141990, Article 141990 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Citrus essential oils (EOs) are renowned for their aroma, but thermal extraction methods can introduce undesirable cooking and pungent odors. The specific compounds responsible for these off-flavors and their perception mechanisms remain unclear. This study investigated the flavor differences between cold pressing (CP) and hydro-distilled (HD) extracted essential oils from sweet oranges (SEOs) using flavoromics strategy. The results indicated that increased levels of alcohol compounds, particularly terpinen-4-ol, β-citronellol, geraniol, trans-carveol, and α-terpineol, were primarily responsible for the off-flavors in HD-extracted SEOs. Furthermore, molecular docking and dynamics simulations revealed that off-flavor compounds bind to olfactory receptors through hydrogen bonding and hydrophobic interactions, inducing slight structural and conformational changes that facilitate odor recognition and activate downstream signaling events. This study offers crucial insights into the mechanisms underlying off-flavor development in citrus EOs, providing valuable knowledge for optimizing extraction methods, controlling SEOs quality, and advancing flavor science.
[Display omitted]
•31 volatile compounds were identified as significant to odor perception in SEOs.•Terpinen-4-ol, β-citronellol, geraniol, trans-carveol, α-terpineol were off-flavors related.•Hydrogen bonds and hydrophobic interactions were crucial for odor recognition.•Off-flavor compounds' higher affinity for multiple ORs explains strong perceptions.•Dynamic OR-odorant binding involves protein structure and conformation changes. |
---|---|
ISSN: | 0308-8146 1873-7072 1873-7072 |
DOI: | 10.1016/j.foodchem.2024.141990 |