The Analysis of Electron Densities: From Basics to Emergent Applications

The electron density determines all properties of a system of nuclei and electrons. It is both computable and observable. Its topology allows gaining insight into the mechanisms of bonding and other phenomena in a way that is complementary to and beyond that available from the molecular orbital pict...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemical reviews 2024-11, Vol.124 (22), p.12661-12737
Hauptverfasser: Koch, Daniel, Pavanello, Michele, Shao, Xuecheng, Ihara, Manabu, Ayers, Paul W., Matta, Chérif F., Jenkins, Samantha, Manzhos, Sergei
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 12737
container_issue 22
container_start_page 12661
container_title Chemical reviews
container_volume 124
creator Koch, Daniel
Pavanello, Michele
Shao, Xuecheng
Ihara, Manabu
Ayers, Paul W.
Matta, Chérif F.
Jenkins, Samantha
Manzhos, Sergei
description The electron density determines all properties of a system of nuclei and electrons. It is both computable and observable. Its topology allows gaining insight into the mechanisms of bonding and other phenomena in a way that is complementary to and beyond that available from the molecular orbital picture and the formal oxidation state (FOS) formalism. The ability to derive mechanistic insight from electron density is also important with methods where orbitals are not available, such as orbital-free density functional theory (OF-DFT). While density topology-based analyses such as QTAIM (quantum theory of atoms-in-molecules) have been widely used, novel, vector-based techniques recently emerged such as next-generation (NG) QTAIM. Density-dependent quantities are also actively used in machine learning (ML)-based methods, in particular, for ML DFT functional development, including machine-learnt kinetic energy functionals. We review QTAIM and its recent extensions such as NG-QTAIM and localization-delocalization matrices (LDM) and their uses in the analysis of bonding, conformations, mechanisms of redox reactions excitations, as well as ultrafast phenomena. We review recent research showing that direct density analysis can circumvent certain pitfalls of the FOS formalism, in particular in the description of anionic redox, and of the widely used (spherically) projected density of states analysis. We discuss uses of density-based quantities for the construction of DFT functionals and prospects of applications of analyses of density topology to get mechanistic insight with OF-DFT and recently developed time-dependent OF-DFT.
doi_str_mv 10.1021/acs.chemrev.4c00297
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3128979060</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3128979060</sourcerecordid><originalsourceid>FETCH-LOGICAL-a225t-92edd1315068f4f5d5a6cc9fbe1b11ea5dba098c65780aae13eb0dda3fab5cb53</originalsourceid><addsrcrecordid>eNp9kEFPwkAQhTdGI4j-AhOzRy-F2W237XpDBDEh8YLnZrudSknbxZ1iwr-3BPToafKS771JPsbuBYwFSDExlsZ2g43H73FkAaROLthQKAlBnGq4ZEMA0IGMYzVgN0TbPiolk2s2CLWKVALRkC3XG-TT1tQHqoi7ks9rtJ13LX_BlqquQnriC-8a_myossQ7x-cN-k9sOz7d7erKmq5yLd2yq9LUhHfnO2Ifi_l6tgxW769vs-kqMFKqLtASi0KEQkGcllGpCmVia3WZo8iFQKOK3IBObaySFIxBEWIORWHC0uTK5iocscfT7s67rz1SlzUVWaxr06LbUxYKmepEQww9Gp5Q6x2RxzLb-aox_pAJyI4Ks15hdlaYnRX2rYfzg33eYPHX-XXWA5MTcGxv3d739ujfyR-XAoCD</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3128979060</pqid></control><display><type>article</type><title>The Analysis of Electron Densities: From Basics to Emergent Applications</title><source>ACS Publications</source><creator>Koch, Daniel ; Pavanello, Michele ; Shao, Xuecheng ; Ihara, Manabu ; Ayers, Paul W. ; Matta, Chérif F. ; Jenkins, Samantha ; Manzhos, Sergei</creator><creatorcontrib>Koch, Daniel ; Pavanello, Michele ; Shao, Xuecheng ; Ihara, Manabu ; Ayers, Paul W. ; Matta, Chérif F. ; Jenkins, Samantha ; Manzhos, Sergei</creatorcontrib><description>The electron density determines all properties of a system of nuclei and electrons. It is both computable and observable. Its topology allows gaining insight into the mechanisms of bonding and other phenomena in a way that is complementary to and beyond that available from the molecular orbital picture and the formal oxidation state (FOS) formalism. The ability to derive mechanistic insight from electron density is also important with methods where orbitals are not available, such as orbital-free density functional theory (OF-DFT). While density topology-based analyses such as QTAIM (quantum theory of atoms-in-molecules) have been widely used, novel, vector-based techniques recently emerged such as next-generation (NG) QTAIM. Density-dependent quantities are also actively used in machine learning (ML)-based methods, in particular, for ML DFT functional development, including machine-learnt kinetic energy functionals. We review QTAIM and its recent extensions such as NG-QTAIM and localization-delocalization matrices (LDM) and their uses in the analysis of bonding, conformations, mechanisms of redox reactions excitations, as well as ultrafast phenomena. We review recent research showing that direct density analysis can circumvent certain pitfalls of the FOS formalism, in particular in the description of anionic redox, and of the widely used (spherically) projected density of states analysis. We discuss uses of density-based quantities for the construction of DFT functionals and prospects of applications of analyses of density topology to get mechanistic insight with OF-DFT and recently developed time-dependent OF-DFT.</description><identifier>ISSN: 0009-2665</identifier><identifier>ISSN: 1520-6890</identifier><identifier>EISSN: 1520-6890</identifier><identifier>DOI: 10.1021/acs.chemrev.4c00297</identifier><identifier>PMID: 39545704</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>Chemical reviews, 2024-11, Vol.124 (22), p.12661-12737</ispartof><rights>2024 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a225t-92edd1315068f4f5d5a6cc9fbe1b11ea5dba098c65780aae13eb0dda3fab5cb53</cites><orcidid>0000-0001-8172-7903 ; 0000-0001-8294-7481 ; 0000-0003-4775-6879 ; 0000-0003-2215-0926 ; 0000-0003-2605-3883 ; 0000-0001-8397-5353 ; 0000-0002-4288-7653</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.chemrev.4c00297$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.chemrev.4c00297$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2764,27075,27923,27924,56737,56787</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39545704$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Koch, Daniel</creatorcontrib><creatorcontrib>Pavanello, Michele</creatorcontrib><creatorcontrib>Shao, Xuecheng</creatorcontrib><creatorcontrib>Ihara, Manabu</creatorcontrib><creatorcontrib>Ayers, Paul W.</creatorcontrib><creatorcontrib>Matta, Chérif F.</creatorcontrib><creatorcontrib>Jenkins, Samantha</creatorcontrib><creatorcontrib>Manzhos, Sergei</creatorcontrib><title>The Analysis of Electron Densities: From Basics to Emergent Applications</title><title>Chemical reviews</title><addtitle>Chem. Rev</addtitle><description>The electron density determines all properties of a system of nuclei and electrons. It is both computable and observable. Its topology allows gaining insight into the mechanisms of bonding and other phenomena in a way that is complementary to and beyond that available from the molecular orbital picture and the formal oxidation state (FOS) formalism. The ability to derive mechanistic insight from electron density is also important with methods where orbitals are not available, such as orbital-free density functional theory (OF-DFT). While density topology-based analyses such as QTAIM (quantum theory of atoms-in-molecules) have been widely used, novel, vector-based techniques recently emerged such as next-generation (NG) QTAIM. Density-dependent quantities are also actively used in machine learning (ML)-based methods, in particular, for ML DFT functional development, including machine-learnt kinetic energy functionals. We review QTAIM and its recent extensions such as NG-QTAIM and localization-delocalization matrices (LDM) and their uses in the analysis of bonding, conformations, mechanisms of redox reactions excitations, as well as ultrafast phenomena. We review recent research showing that direct density analysis can circumvent certain pitfalls of the FOS formalism, in particular in the description of anionic redox, and of the widely used (spherically) projected density of states analysis. We discuss uses of density-based quantities for the construction of DFT functionals and prospects of applications of analyses of density topology to get mechanistic insight with OF-DFT and recently developed time-dependent OF-DFT.</description><issn>0009-2665</issn><issn>1520-6890</issn><issn>1520-6890</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kEFPwkAQhTdGI4j-AhOzRy-F2W237XpDBDEh8YLnZrudSknbxZ1iwr-3BPToafKS771JPsbuBYwFSDExlsZ2g43H73FkAaROLthQKAlBnGq4ZEMA0IGMYzVgN0TbPiolk2s2CLWKVALRkC3XG-TT1tQHqoi7ks9rtJ13LX_BlqquQnriC-8a_myossQ7x-cN-k9sOz7d7erKmq5yLd2yq9LUhHfnO2Ifi_l6tgxW769vs-kqMFKqLtASi0KEQkGcllGpCmVia3WZo8iFQKOK3IBObaySFIxBEWIORWHC0uTK5iocscfT7s67rz1SlzUVWaxr06LbUxYKmepEQww9Gp5Q6x2RxzLb-aox_pAJyI4Ks15hdlaYnRX2rYfzg33eYPHX-XXWA5MTcGxv3d739ujfyR-XAoCD</recordid><startdate>20241127</startdate><enddate>20241127</enddate><creator>Koch, Daniel</creator><creator>Pavanello, Michele</creator><creator>Shao, Xuecheng</creator><creator>Ihara, Manabu</creator><creator>Ayers, Paul W.</creator><creator>Matta, Chérif F.</creator><creator>Jenkins, Samantha</creator><creator>Manzhos, Sergei</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-8172-7903</orcidid><orcidid>https://orcid.org/0000-0001-8294-7481</orcidid><orcidid>https://orcid.org/0000-0003-4775-6879</orcidid><orcidid>https://orcid.org/0000-0003-2215-0926</orcidid><orcidid>https://orcid.org/0000-0003-2605-3883</orcidid><orcidid>https://orcid.org/0000-0001-8397-5353</orcidid><orcidid>https://orcid.org/0000-0002-4288-7653</orcidid></search><sort><creationdate>20241127</creationdate><title>The Analysis of Electron Densities: From Basics to Emergent Applications</title><author>Koch, Daniel ; Pavanello, Michele ; Shao, Xuecheng ; Ihara, Manabu ; Ayers, Paul W. ; Matta, Chérif F. ; Jenkins, Samantha ; Manzhos, Sergei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a225t-92edd1315068f4f5d5a6cc9fbe1b11ea5dba098c65780aae13eb0dda3fab5cb53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Koch, Daniel</creatorcontrib><creatorcontrib>Pavanello, Michele</creatorcontrib><creatorcontrib>Shao, Xuecheng</creatorcontrib><creatorcontrib>Ihara, Manabu</creatorcontrib><creatorcontrib>Ayers, Paul W.</creatorcontrib><creatorcontrib>Matta, Chérif F.</creatorcontrib><creatorcontrib>Jenkins, Samantha</creatorcontrib><creatorcontrib>Manzhos, Sergei</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Chemical reviews</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Koch, Daniel</au><au>Pavanello, Michele</au><au>Shao, Xuecheng</au><au>Ihara, Manabu</au><au>Ayers, Paul W.</au><au>Matta, Chérif F.</au><au>Jenkins, Samantha</au><au>Manzhos, Sergei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Analysis of Electron Densities: From Basics to Emergent Applications</atitle><jtitle>Chemical reviews</jtitle><addtitle>Chem. Rev</addtitle><date>2024-11-27</date><risdate>2024</risdate><volume>124</volume><issue>22</issue><spage>12661</spage><epage>12737</epage><pages>12661-12737</pages><issn>0009-2665</issn><issn>1520-6890</issn><eissn>1520-6890</eissn><abstract>The electron density determines all properties of a system of nuclei and electrons. It is both computable and observable. Its topology allows gaining insight into the mechanisms of bonding and other phenomena in a way that is complementary to and beyond that available from the molecular orbital picture and the formal oxidation state (FOS) formalism. The ability to derive mechanistic insight from electron density is also important with methods where orbitals are not available, such as orbital-free density functional theory (OF-DFT). While density topology-based analyses such as QTAIM (quantum theory of atoms-in-molecules) have been widely used, novel, vector-based techniques recently emerged such as next-generation (NG) QTAIM. Density-dependent quantities are also actively used in machine learning (ML)-based methods, in particular, for ML DFT functional development, including machine-learnt kinetic energy functionals. We review QTAIM and its recent extensions such as NG-QTAIM and localization-delocalization matrices (LDM) and their uses in the analysis of bonding, conformations, mechanisms of redox reactions excitations, as well as ultrafast phenomena. We review recent research showing that direct density analysis can circumvent certain pitfalls of the FOS formalism, in particular in the description of anionic redox, and of the widely used (spherically) projected density of states analysis. We discuss uses of density-based quantities for the construction of DFT functionals and prospects of applications of analyses of density topology to get mechanistic insight with OF-DFT and recently developed time-dependent OF-DFT.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>39545704</pmid><doi>10.1021/acs.chemrev.4c00297</doi><tpages>77</tpages><orcidid>https://orcid.org/0000-0001-8172-7903</orcidid><orcidid>https://orcid.org/0000-0001-8294-7481</orcidid><orcidid>https://orcid.org/0000-0003-4775-6879</orcidid><orcidid>https://orcid.org/0000-0003-2215-0926</orcidid><orcidid>https://orcid.org/0000-0003-2605-3883</orcidid><orcidid>https://orcid.org/0000-0001-8397-5353</orcidid><orcidid>https://orcid.org/0000-0002-4288-7653</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0009-2665
ispartof Chemical reviews, 2024-11, Vol.124 (22), p.12661-12737
issn 0009-2665
1520-6890
1520-6890
language eng
recordid cdi_proquest_miscellaneous_3128979060
source ACS Publications
title The Analysis of Electron Densities: From Basics to Emergent Applications
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T19%3A40%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Analysis%20of%20Electron%20Densities:%20From%20Basics%20to%20Emergent%20Applications&rft.jtitle=Chemical%20reviews&rft.au=Koch,%20Daniel&rft.date=2024-11-27&rft.volume=124&rft.issue=22&rft.spage=12661&rft.epage=12737&rft.pages=12661-12737&rft.issn=0009-2665&rft.eissn=1520-6890&rft_id=info:doi/10.1021/acs.chemrev.4c00297&rft_dat=%3Cproquest_cross%3E3128979060%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3128979060&rft_id=info:pmid/39545704&rfr_iscdi=true