Improved DeTraC Binary Coyote Net‐Based Multiple Instance Learning for Predicting Lymph Node Metastasis of Breast Cancer From Whole‐Slide Pathological Images

ABSTRACT Background Early detection of lymph node metastasis in breast cancer is vital for improving treatment outcomes and prognosis. Methods This study introduces an Improved Decompose, Transfer, and Compose Binary Coyote Net‐based Multiple Instance Learning (ImDeTraC‐BCNet‐MIL) method for predict...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The international journal of medical robotics + computer assisted surgery 2024-12, Vol.20 (6), p.e70009-n/a
Hauptverfasser: Ramkumar, M., Sarath Kumar, R., Padmapriya, R., Balu Mahandiran, S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 6
container_start_page e70009
container_title The international journal of medical robotics + computer assisted surgery
container_volume 20
creator Ramkumar, M.
Sarath Kumar, R.
Padmapriya, R.
Balu Mahandiran, S.
description ABSTRACT Background Early detection of lymph node metastasis in breast cancer is vital for improving treatment outcomes and prognosis. Methods This study introduces an Improved Decompose, Transfer, and Compose Binary Coyote Net‐based Multiple Instance Learning (ImDeTraC‐BCNet‐MIL) method for predicting lymph node metastasis from Whole Slide Images (WSIs) using multiple instance learning. The method involves segmenting WSIs into patches using Otsu and double‐dimensional clustering techniques. The developed multiple instance learning approach introduces a paradigm into computational pathology by shaping pathological data and constructing features. ImDeTraC‐BCNet‐MIL was utilised for feature generation during both training and testing to differentiate lymph node metastasis in WSIs. Results The proposed model achieves the highest accuracy of 95.3% and 99.8%, precision values of 98% and 99.8%, and recall rates of 92.9% and 99.8% on the Camelyon16 and Camelyon17 datasets. Conclusions These findings underscore the effectiveness of ImDeTraC‐BCNet‐MIL in enhancing the early detection of lymph node metastasis in breast cancer.
doi_str_mv 10.1002/rcs.70009
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3128827858</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3149199058</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2789-3273d2aa618330fdd8182bc738d724a84d00cb3dd53c8399fb4a416c579d0e913</originalsourceid><addsrcrecordid>eNp10c1OGzEQB3ALUfHVHvoCyBIXegjYaztrH8lS2kiBokLV3laOPRuMvOtg71Ll1kfoK_TV-iR1COVQqSd7pJ9nrPkj9JaSE0pIcRpNOikJIWoL7VFeypFQ42_bL3dBd9F-SveEcMHHfAftMiW4YILvoV_TdhnDI1h8DrdRV3jiOh1XuAqr0AO-gv73j58TnTK4HHzvlh7wtEu97gzgGejYuW6BmxDxdQTrTL8uZ6t2eYevggV8Cb3OOrmEQ4MnEXKFq_XriC9iaPHXu-Ahz7jxLvNr3ec6LJzRHk9bvYD0Gr1qtE_w5vk8QF8u3t9WH0ezTx-m1dlsZIpSqhErSmYLrcdUMkYaayWVxdyUTNqy4FpyS4iZM2sFM5Ip1cy55nRsRKksAUXZATre9M37eBgg9XXrkgHvdQdhSDWjhZR5lJCZHv1D78MQu_y7rLiiSpEn9W6jTAwpRWjqZXRtXm5NSb3Orc651U-5ZXv43HGYt2Bf5N-gMjjdgO_Ow-r_nerP1c2m5R-X5KRU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3149199058</pqid></control><display><type>article</type><title>Improved DeTraC Binary Coyote Net‐Based Multiple Instance Learning for Predicting Lymph Node Metastasis of Breast Cancer From Whole‐Slide Pathological Images</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Ramkumar, M. ; Sarath Kumar, R. ; Padmapriya, R. ; Balu Mahandiran, S.</creator><creatorcontrib>Ramkumar, M. ; Sarath Kumar, R. ; Padmapriya, R. ; Balu Mahandiran, S.</creatorcontrib><description>ABSTRACT Background Early detection of lymph node metastasis in breast cancer is vital for improving treatment outcomes and prognosis. Methods This study introduces an Improved Decompose, Transfer, and Compose Binary Coyote Net‐based Multiple Instance Learning (ImDeTraC‐BCNet‐MIL) method for predicting lymph node metastasis from Whole Slide Images (WSIs) using multiple instance learning. The method involves segmenting WSIs into patches using Otsu and double‐dimensional clustering techniques. The developed multiple instance learning approach introduces a paradigm into computational pathology by shaping pathological data and constructing features. ImDeTraC‐BCNet‐MIL was utilised for feature generation during both training and testing to differentiate lymph node metastasis in WSIs. Results The proposed model achieves the highest accuracy of 95.3% and 99.8%, precision values of 98% and 99.8%, and recall rates of 92.9% and 99.8% on the Camelyon16 and Camelyon17 datasets. Conclusions These findings underscore the effectiveness of ImDeTraC‐BCNet‐MIL in enhancing the early detection of lymph node metastasis in breast cancer.</description><identifier>ISSN: 1478-5951</identifier><identifier>ISSN: 1478-596X</identifier><identifier>EISSN: 1478-596X</identifier><identifier>DOI: 10.1002/rcs.70009</identifier><identifier>PMID: 39545354</identifier><language>eng</language><publisher>England: Wiley Subscription Services, Inc</publisher><subject>Breast cancer ; Clustering ; deep convolutional neural network ; histopathological image analysis ; Learning ; lymph node metastasis ; Lymphatic system ; Metastasis ; multiple instance learning ; whole slide images</subject><ispartof>The international journal of medical robotics + computer assisted surgery, 2024-12, Vol.20 (6), p.e70009-n/a</ispartof><rights>2024 John Wiley &amp; Sons Ltd.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2789-3273d2aa618330fdd8182bc738d724a84d00cb3dd53c8399fb4a416c579d0e913</cites><orcidid>0000-0003-3109-4014</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Frcs.70009$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Frcs.70009$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,777,781,1412,27905,27906,45555,45556</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39545354$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ramkumar, M.</creatorcontrib><creatorcontrib>Sarath Kumar, R.</creatorcontrib><creatorcontrib>Padmapriya, R.</creatorcontrib><creatorcontrib>Balu Mahandiran, S.</creatorcontrib><title>Improved DeTraC Binary Coyote Net‐Based Multiple Instance Learning for Predicting Lymph Node Metastasis of Breast Cancer From Whole‐Slide Pathological Images</title><title>The international journal of medical robotics + computer assisted surgery</title><addtitle>Int J Med Robot</addtitle><description>ABSTRACT Background Early detection of lymph node metastasis in breast cancer is vital for improving treatment outcomes and prognosis. Methods This study introduces an Improved Decompose, Transfer, and Compose Binary Coyote Net‐based Multiple Instance Learning (ImDeTraC‐BCNet‐MIL) method for predicting lymph node metastasis from Whole Slide Images (WSIs) using multiple instance learning. The method involves segmenting WSIs into patches using Otsu and double‐dimensional clustering techniques. The developed multiple instance learning approach introduces a paradigm into computational pathology by shaping pathological data and constructing features. ImDeTraC‐BCNet‐MIL was utilised for feature generation during both training and testing to differentiate lymph node metastasis in WSIs. Results The proposed model achieves the highest accuracy of 95.3% and 99.8%, precision values of 98% and 99.8%, and recall rates of 92.9% and 99.8% on the Camelyon16 and Camelyon17 datasets. Conclusions These findings underscore the effectiveness of ImDeTraC‐BCNet‐MIL in enhancing the early detection of lymph node metastasis in breast cancer.</description><subject>Breast cancer</subject><subject>Clustering</subject><subject>deep convolutional neural network</subject><subject>histopathological image analysis</subject><subject>Learning</subject><subject>lymph node metastasis</subject><subject>Lymphatic system</subject><subject>Metastasis</subject><subject>multiple instance learning</subject><subject>whole slide images</subject><issn>1478-5951</issn><issn>1478-596X</issn><issn>1478-596X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp10c1OGzEQB3ALUfHVHvoCyBIXegjYaztrH8lS2kiBokLV3laOPRuMvOtg71Ll1kfoK_TV-iR1COVQqSd7pJ9nrPkj9JaSE0pIcRpNOikJIWoL7VFeypFQ42_bL3dBd9F-SveEcMHHfAftMiW4YILvoV_TdhnDI1h8DrdRV3jiOh1XuAqr0AO-gv73j58TnTK4HHzvlh7wtEu97gzgGejYuW6BmxDxdQTrTL8uZ6t2eYevggV8Cb3OOrmEQ4MnEXKFq_XriC9iaPHXu-Ahz7jxLvNr3ec6LJzRHk9bvYD0Gr1qtE_w5vk8QF8u3t9WH0ezTx-m1dlsZIpSqhErSmYLrcdUMkYaayWVxdyUTNqy4FpyS4iZM2sFM5Ip1cy55nRsRKksAUXZATre9M37eBgg9XXrkgHvdQdhSDWjhZR5lJCZHv1D78MQu_y7rLiiSpEn9W6jTAwpRWjqZXRtXm5NSb3Orc651U-5ZXv43HGYt2Bf5N-gMjjdgO_Ow-r_nerP1c2m5R-X5KRU</recordid><startdate>202412</startdate><enddate>202412</enddate><creator>Ramkumar, M.</creator><creator>Sarath Kumar, R.</creator><creator>Padmapriya, R.</creator><creator>Balu Mahandiran, S.</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JQ2</scope><scope>K9.</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-3109-4014</orcidid></search><sort><creationdate>202412</creationdate><title>Improved DeTraC Binary Coyote Net‐Based Multiple Instance Learning for Predicting Lymph Node Metastasis of Breast Cancer From Whole‐Slide Pathological Images</title><author>Ramkumar, M. ; Sarath Kumar, R. ; Padmapriya, R. ; Balu Mahandiran, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2789-3273d2aa618330fdd8182bc738d724a84d00cb3dd53c8399fb4a416c579d0e913</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Breast cancer</topic><topic>Clustering</topic><topic>deep convolutional neural network</topic><topic>histopathological image analysis</topic><topic>Learning</topic><topic>lymph node metastasis</topic><topic>Lymphatic system</topic><topic>Metastasis</topic><topic>multiple instance learning</topic><topic>whole slide images</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ramkumar, M.</creatorcontrib><creatorcontrib>Sarath Kumar, R.</creatorcontrib><creatorcontrib>Padmapriya, R.</creatorcontrib><creatorcontrib>Balu Mahandiran, S.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>The international journal of medical robotics + computer assisted surgery</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ramkumar, M.</au><au>Sarath Kumar, R.</au><au>Padmapriya, R.</au><au>Balu Mahandiran, S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improved DeTraC Binary Coyote Net‐Based Multiple Instance Learning for Predicting Lymph Node Metastasis of Breast Cancer From Whole‐Slide Pathological Images</atitle><jtitle>The international journal of medical robotics + computer assisted surgery</jtitle><addtitle>Int J Med Robot</addtitle><date>2024-12</date><risdate>2024</risdate><volume>20</volume><issue>6</issue><spage>e70009</spage><epage>n/a</epage><pages>e70009-n/a</pages><issn>1478-5951</issn><issn>1478-596X</issn><eissn>1478-596X</eissn><abstract>ABSTRACT Background Early detection of lymph node metastasis in breast cancer is vital for improving treatment outcomes and prognosis. Methods This study introduces an Improved Decompose, Transfer, and Compose Binary Coyote Net‐based Multiple Instance Learning (ImDeTraC‐BCNet‐MIL) method for predicting lymph node metastasis from Whole Slide Images (WSIs) using multiple instance learning. The method involves segmenting WSIs into patches using Otsu and double‐dimensional clustering techniques. The developed multiple instance learning approach introduces a paradigm into computational pathology by shaping pathological data and constructing features. ImDeTraC‐BCNet‐MIL was utilised for feature generation during both training and testing to differentiate lymph node metastasis in WSIs. Results The proposed model achieves the highest accuracy of 95.3% and 99.8%, precision values of 98% and 99.8%, and recall rates of 92.9% and 99.8% on the Camelyon16 and Camelyon17 datasets. Conclusions These findings underscore the effectiveness of ImDeTraC‐BCNet‐MIL in enhancing the early detection of lymph node metastasis in breast cancer.</abstract><cop>England</cop><pub>Wiley Subscription Services, Inc</pub><pmid>39545354</pmid><doi>10.1002/rcs.70009</doi><tpages>21</tpages><orcidid>https://orcid.org/0000-0003-3109-4014</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1478-5951
ispartof The international journal of medical robotics + computer assisted surgery, 2024-12, Vol.20 (6), p.e70009-n/a
issn 1478-5951
1478-596X
1478-596X
language eng
recordid cdi_proquest_miscellaneous_3128827858
source Wiley Online Library Journals Frontfile Complete
subjects Breast cancer
Clustering
deep convolutional neural network
histopathological image analysis
Learning
lymph node metastasis
Lymphatic system
Metastasis
multiple instance learning
whole slide images
title Improved DeTraC Binary Coyote Net‐Based Multiple Instance Learning for Predicting Lymph Node Metastasis of Breast Cancer From Whole‐Slide Pathological Images
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T23%3A58%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improved%20DeTraC%20Binary%20Coyote%20Net%E2%80%90Based%20Multiple%20Instance%20Learning%20for%20Predicting%20Lymph%20Node%20Metastasis%20of%20Breast%20Cancer%20From%20Whole%E2%80%90Slide%20Pathological%20Images&rft.jtitle=The%20international%20journal%20of%20medical%20robotics%20+%20computer%20assisted%20surgery&rft.au=Ramkumar,%20M.&rft.date=2024-12&rft.volume=20&rft.issue=6&rft.spage=e70009&rft.epage=n/a&rft.pages=e70009-n/a&rft.issn=1478-5951&rft.eissn=1478-596X&rft_id=info:doi/10.1002/rcs.70009&rft_dat=%3Cproquest_cross%3E3149199058%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3149199058&rft_id=info:pmid/39545354&rfr_iscdi=true