A Deep Learning-Based Approach to Characterize Skull Physical Properties: A Phantom Study

Transcranial ultrasound imaging is a popular method to study cerebral functionality and diagnose brain injuries. However, the detected ultrasound signal is greatly distorted due to the aberration caused by the skull bone. The aberration mechanism mainly depends on thickness and porosity, two importa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of biophotonics 2024-11, p.e202400131
Hauptverfasser: Aggrawal, Deepika, Saint-Martin, Loïc, Manwar, Rayyan, Siegel, Amanda, Schonfeld, Dan, Avanaki, Kamran
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page e202400131
container_title Journal of biophotonics
container_volume
creator Aggrawal, Deepika
Saint-Martin, Loïc
Manwar, Rayyan
Siegel, Amanda
Schonfeld, Dan
Avanaki, Kamran
description Transcranial ultrasound imaging is a popular method to study cerebral functionality and diagnose brain injuries. However, the detected ultrasound signal is greatly distorted due to the aberration caused by the skull bone. The aberration mechanism mainly depends on thickness and porosity, two important skull physical characteristics. Although skull bone thickness and porosity can be estimated from CT or MRI scans, there is significant value in developing methods for obtaining thickness and porosity information from ultrasound itself. Here, we extracted various features from ultrasound signals using physical skull-mimicking phantoms of a range of thicknesses with embedded porosity-mimicking acoustic mismatches and analyzed them using machine learning (ML) and deep learning (DL) models. The performance evaluation demonstrated that both ML- and DL-trained models could predict the physical characteristics of a variety of skull phantoms with reasonable accuracy. The proposed approach could be expanded upon and utilized for the development of effective skull aberration correction methods.
doi_str_mv 10.1002/jbio.202400131
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3128823640</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3128823640</sourcerecordid><originalsourceid>FETCH-LOGICAL-c180t-c7a9de77e1c789b9550ba738b98e3ec6ec1123d22c6a4fb423aee9fbfa59e18f3</originalsourceid><addsrcrecordid>eNo9kE1Lw0AQhhdRbK1ePcoevaTOfiTZeIv1EwoKVdBT2GwmNjVf3U0O9deb0trTvAzPvAwPIZcMpgyA36zSoply4BKACXZExkwF0oNAquNDFp8jcubcCiAA4YtTMhKRL8GX_ph8xfQesaVz1LYu6m_vTjvMaNy2ttFmSbuGzpbaatOhLX6RLn76sqRvy40rjB6CbVq0XYHulsbDWtddU9FF12ebc3KS69LhxX5OyMfjw_vs2Zu_Pr3M4rlnmILOM6GOMgxDZCZUURr5PqQ6FCqNFAo0ARrGuMg4N4GWeSq50IhRnubaj5CpXEzI9a53-Hjdo-uSqnAGy1LX2PQuEYwrxUUgYUCnO9TYxjmLedLaotJ2kzBItjqTrc7koHM4uNp392mF2QH_9yf-AO3jcQY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3128823640</pqid></control><display><type>article</type><title>A Deep Learning-Based Approach to Characterize Skull Physical Properties: A Phantom Study</title><source>Wiley Online Library All Journals</source><creator>Aggrawal, Deepika ; Saint-Martin, Loïc ; Manwar, Rayyan ; Siegel, Amanda ; Schonfeld, Dan ; Avanaki, Kamran</creator><creatorcontrib>Aggrawal, Deepika ; Saint-Martin, Loïc ; Manwar, Rayyan ; Siegel, Amanda ; Schonfeld, Dan ; Avanaki, Kamran</creatorcontrib><description>Transcranial ultrasound imaging is a popular method to study cerebral functionality and diagnose brain injuries. However, the detected ultrasound signal is greatly distorted due to the aberration caused by the skull bone. The aberration mechanism mainly depends on thickness and porosity, two important skull physical characteristics. Although skull bone thickness and porosity can be estimated from CT or MRI scans, there is significant value in developing methods for obtaining thickness and porosity information from ultrasound itself. Here, we extracted various features from ultrasound signals using physical skull-mimicking phantoms of a range of thicknesses with embedded porosity-mimicking acoustic mismatches and analyzed them using machine learning (ML) and deep learning (DL) models. The performance evaluation demonstrated that both ML- and DL-trained models could predict the physical characteristics of a variety of skull phantoms with reasonable accuracy. The proposed approach could be expanded upon and utilized for the development of effective skull aberration correction methods.</description><identifier>ISSN: 1864-063X</identifier><identifier>ISSN: 1864-0648</identifier><identifier>EISSN: 1864-0648</identifier><identifier>DOI: 10.1002/jbio.202400131</identifier><identifier>PMID: 39540545</identifier><language>eng</language><publisher>Germany</publisher><ispartof>Journal of biophotonics, 2024-11, p.e202400131</ispartof><rights>2024 The Author(s). Journal of Biophotonics published by Wiley‐VCH GmbH.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c180t-c7a9de77e1c789b9550ba738b98e3ec6ec1123d22c6a4fb423aee9fbfa59e18f3</cites><orcidid>0000-0002-8550-8932 ; 0000-0002-1437-8456</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39540545$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Aggrawal, Deepika</creatorcontrib><creatorcontrib>Saint-Martin, Loïc</creatorcontrib><creatorcontrib>Manwar, Rayyan</creatorcontrib><creatorcontrib>Siegel, Amanda</creatorcontrib><creatorcontrib>Schonfeld, Dan</creatorcontrib><creatorcontrib>Avanaki, Kamran</creatorcontrib><title>A Deep Learning-Based Approach to Characterize Skull Physical Properties: A Phantom Study</title><title>Journal of biophotonics</title><addtitle>J Biophotonics</addtitle><description>Transcranial ultrasound imaging is a popular method to study cerebral functionality and diagnose brain injuries. However, the detected ultrasound signal is greatly distorted due to the aberration caused by the skull bone. The aberration mechanism mainly depends on thickness and porosity, two important skull physical characteristics. Although skull bone thickness and porosity can be estimated from CT or MRI scans, there is significant value in developing methods for obtaining thickness and porosity information from ultrasound itself. Here, we extracted various features from ultrasound signals using physical skull-mimicking phantoms of a range of thicknesses with embedded porosity-mimicking acoustic mismatches and analyzed them using machine learning (ML) and deep learning (DL) models. The performance evaluation demonstrated that both ML- and DL-trained models could predict the physical characteristics of a variety of skull phantoms with reasonable accuracy. The proposed approach could be expanded upon and utilized for the development of effective skull aberration correction methods.</description><issn>1864-063X</issn><issn>1864-0648</issn><issn>1864-0648</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNo9kE1Lw0AQhhdRbK1ePcoevaTOfiTZeIv1EwoKVdBT2GwmNjVf3U0O9deb0trTvAzPvAwPIZcMpgyA36zSoply4BKACXZExkwF0oNAquNDFp8jcubcCiAA4YtTMhKRL8GX_ph8xfQesaVz1LYu6m_vTjvMaNy2ttFmSbuGzpbaatOhLX6RLn76sqRvy40rjB6CbVq0XYHulsbDWtddU9FF12ebc3KS69LhxX5OyMfjw_vs2Zu_Pr3M4rlnmILOM6GOMgxDZCZUURr5PqQ6FCqNFAo0ARrGuMg4N4GWeSq50IhRnubaj5CpXEzI9a53-Hjdo-uSqnAGy1LX2PQuEYwrxUUgYUCnO9TYxjmLedLaotJ2kzBItjqTrc7koHM4uNp392mF2QH_9yf-AO3jcQY</recordid><startdate>20241114</startdate><enddate>20241114</enddate><creator>Aggrawal, Deepika</creator><creator>Saint-Martin, Loïc</creator><creator>Manwar, Rayyan</creator><creator>Siegel, Amanda</creator><creator>Schonfeld, Dan</creator><creator>Avanaki, Kamran</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-8550-8932</orcidid><orcidid>https://orcid.org/0000-0002-1437-8456</orcidid></search><sort><creationdate>20241114</creationdate><title>A Deep Learning-Based Approach to Characterize Skull Physical Properties: A Phantom Study</title><author>Aggrawal, Deepika ; Saint-Martin, Loïc ; Manwar, Rayyan ; Siegel, Amanda ; Schonfeld, Dan ; Avanaki, Kamran</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c180t-c7a9de77e1c789b9550ba738b98e3ec6ec1123d22c6a4fb423aee9fbfa59e18f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Aggrawal, Deepika</creatorcontrib><creatorcontrib>Saint-Martin, Loïc</creatorcontrib><creatorcontrib>Manwar, Rayyan</creatorcontrib><creatorcontrib>Siegel, Amanda</creatorcontrib><creatorcontrib>Schonfeld, Dan</creatorcontrib><creatorcontrib>Avanaki, Kamran</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of biophotonics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Aggrawal, Deepika</au><au>Saint-Martin, Loïc</au><au>Manwar, Rayyan</au><au>Siegel, Amanda</au><au>Schonfeld, Dan</au><au>Avanaki, Kamran</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Deep Learning-Based Approach to Characterize Skull Physical Properties: A Phantom Study</atitle><jtitle>Journal of biophotonics</jtitle><addtitle>J Biophotonics</addtitle><date>2024-11-14</date><risdate>2024</risdate><spage>e202400131</spage><pages>e202400131-</pages><issn>1864-063X</issn><issn>1864-0648</issn><eissn>1864-0648</eissn><abstract>Transcranial ultrasound imaging is a popular method to study cerebral functionality and diagnose brain injuries. However, the detected ultrasound signal is greatly distorted due to the aberration caused by the skull bone. The aberration mechanism mainly depends on thickness and porosity, two important skull physical characteristics. Although skull bone thickness and porosity can be estimated from CT or MRI scans, there is significant value in developing methods for obtaining thickness and porosity information from ultrasound itself. Here, we extracted various features from ultrasound signals using physical skull-mimicking phantoms of a range of thicknesses with embedded porosity-mimicking acoustic mismatches and analyzed them using machine learning (ML) and deep learning (DL) models. The performance evaluation demonstrated that both ML- and DL-trained models could predict the physical characteristics of a variety of skull phantoms with reasonable accuracy. The proposed approach could be expanded upon and utilized for the development of effective skull aberration correction methods.</abstract><cop>Germany</cop><pmid>39540545</pmid><doi>10.1002/jbio.202400131</doi><orcidid>https://orcid.org/0000-0002-8550-8932</orcidid><orcidid>https://orcid.org/0000-0002-1437-8456</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1864-063X
ispartof Journal of biophotonics, 2024-11, p.e202400131
issn 1864-063X
1864-0648
1864-0648
language eng
recordid cdi_proquest_miscellaneous_3128823640
source Wiley Online Library All Journals
title A Deep Learning-Based Approach to Characterize Skull Physical Properties: A Phantom Study
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T10%3A16%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Deep%20Learning-Based%20Approach%20to%20Characterize%20Skull%20Physical%20Properties:%20A%20Phantom%20Study&rft.jtitle=Journal%20of%20biophotonics&rft.au=Aggrawal,%20Deepika&rft.date=2024-11-14&rft.spage=e202400131&rft.pages=e202400131-&rft.issn=1864-063X&rft.eissn=1864-0648&rft_id=info:doi/10.1002/jbio.202400131&rft_dat=%3Cproquest_cross%3E3128823640%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3128823640&rft_id=info:pmid/39540545&rfr_iscdi=true