A Deep Learning-Based Approach to Characterize Skull Physical Properties: A Phantom Study
Transcranial ultrasound imaging is a popular method to study cerebral functionality and diagnose brain injuries. However, the detected ultrasound signal is greatly distorted due to the aberration caused by the skull bone. The aberration mechanism mainly depends on thickness and porosity, two importa...
Gespeichert in:
Veröffentlicht in: | Journal of biophotonics 2024-11, p.e202400131 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | e202400131 |
container_title | Journal of biophotonics |
container_volume | |
creator | Aggrawal, Deepika Saint-Martin, Loïc Manwar, Rayyan Siegel, Amanda Schonfeld, Dan Avanaki, Kamran |
description | Transcranial ultrasound imaging is a popular method to study cerebral functionality and diagnose brain injuries. However, the detected ultrasound signal is greatly distorted due to the aberration caused by the skull bone. The aberration mechanism mainly depends on thickness and porosity, two important skull physical characteristics. Although skull bone thickness and porosity can be estimated from CT or MRI scans, there is significant value in developing methods for obtaining thickness and porosity information from ultrasound itself. Here, we extracted various features from ultrasound signals using physical skull-mimicking phantoms of a range of thicknesses with embedded porosity-mimicking acoustic mismatches and analyzed them using machine learning (ML) and deep learning (DL) models. The performance evaluation demonstrated that both ML- and DL-trained models could predict the physical characteristics of a variety of skull phantoms with reasonable accuracy. The proposed approach could be expanded upon and utilized for the development of effective skull aberration correction methods. |
doi_str_mv | 10.1002/jbio.202400131 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3128823640</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3128823640</sourcerecordid><originalsourceid>FETCH-LOGICAL-c180t-c7a9de77e1c789b9550ba738b98e3ec6ec1123d22c6a4fb423aee9fbfa59e18f3</originalsourceid><addsrcrecordid>eNo9kE1Lw0AQhhdRbK1ePcoevaTOfiTZeIv1EwoKVdBT2GwmNjVf3U0O9deb0trTvAzPvAwPIZcMpgyA36zSoply4BKACXZExkwF0oNAquNDFp8jcubcCiAA4YtTMhKRL8GX_ph8xfQesaVz1LYu6m_vTjvMaNy2ttFmSbuGzpbaatOhLX6RLn76sqRvy40rjB6CbVq0XYHulsbDWtddU9FF12ebc3KS69LhxX5OyMfjw_vs2Zu_Pr3M4rlnmILOM6GOMgxDZCZUURr5PqQ6FCqNFAo0ARrGuMg4N4GWeSq50IhRnubaj5CpXEzI9a53-Hjdo-uSqnAGy1LX2PQuEYwrxUUgYUCnO9TYxjmLedLaotJ2kzBItjqTrc7koHM4uNp392mF2QH_9yf-AO3jcQY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3128823640</pqid></control><display><type>article</type><title>A Deep Learning-Based Approach to Characterize Skull Physical Properties: A Phantom Study</title><source>Wiley Online Library All Journals</source><creator>Aggrawal, Deepika ; Saint-Martin, Loïc ; Manwar, Rayyan ; Siegel, Amanda ; Schonfeld, Dan ; Avanaki, Kamran</creator><creatorcontrib>Aggrawal, Deepika ; Saint-Martin, Loïc ; Manwar, Rayyan ; Siegel, Amanda ; Schonfeld, Dan ; Avanaki, Kamran</creatorcontrib><description>Transcranial ultrasound imaging is a popular method to study cerebral functionality and diagnose brain injuries. However, the detected ultrasound signal is greatly distorted due to the aberration caused by the skull bone. The aberration mechanism mainly depends on thickness and porosity, two important skull physical characteristics. Although skull bone thickness and porosity can be estimated from CT or MRI scans, there is significant value in developing methods for obtaining thickness and porosity information from ultrasound itself. Here, we extracted various features from ultrasound signals using physical skull-mimicking phantoms of a range of thicknesses with embedded porosity-mimicking acoustic mismatches and analyzed them using machine learning (ML) and deep learning (DL) models. The performance evaluation demonstrated that both ML- and DL-trained models could predict the physical characteristics of a variety of skull phantoms with reasonable accuracy. The proposed approach could be expanded upon and utilized for the development of effective skull aberration correction methods.</description><identifier>ISSN: 1864-063X</identifier><identifier>ISSN: 1864-0648</identifier><identifier>EISSN: 1864-0648</identifier><identifier>DOI: 10.1002/jbio.202400131</identifier><identifier>PMID: 39540545</identifier><language>eng</language><publisher>Germany</publisher><ispartof>Journal of biophotonics, 2024-11, p.e202400131</ispartof><rights>2024 The Author(s). Journal of Biophotonics published by Wiley‐VCH GmbH.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c180t-c7a9de77e1c789b9550ba738b98e3ec6ec1123d22c6a4fb423aee9fbfa59e18f3</cites><orcidid>0000-0002-8550-8932 ; 0000-0002-1437-8456</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39540545$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Aggrawal, Deepika</creatorcontrib><creatorcontrib>Saint-Martin, Loïc</creatorcontrib><creatorcontrib>Manwar, Rayyan</creatorcontrib><creatorcontrib>Siegel, Amanda</creatorcontrib><creatorcontrib>Schonfeld, Dan</creatorcontrib><creatorcontrib>Avanaki, Kamran</creatorcontrib><title>A Deep Learning-Based Approach to Characterize Skull Physical Properties: A Phantom Study</title><title>Journal of biophotonics</title><addtitle>J Biophotonics</addtitle><description>Transcranial ultrasound imaging is a popular method to study cerebral functionality and diagnose brain injuries. However, the detected ultrasound signal is greatly distorted due to the aberration caused by the skull bone. The aberration mechanism mainly depends on thickness and porosity, two important skull physical characteristics. Although skull bone thickness and porosity can be estimated from CT or MRI scans, there is significant value in developing methods for obtaining thickness and porosity information from ultrasound itself. Here, we extracted various features from ultrasound signals using physical skull-mimicking phantoms of a range of thicknesses with embedded porosity-mimicking acoustic mismatches and analyzed them using machine learning (ML) and deep learning (DL) models. The performance evaluation demonstrated that both ML- and DL-trained models could predict the physical characteristics of a variety of skull phantoms with reasonable accuracy. The proposed approach could be expanded upon and utilized for the development of effective skull aberration correction methods.</description><issn>1864-063X</issn><issn>1864-0648</issn><issn>1864-0648</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNo9kE1Lw0AQhhdRbK1ePcoevaTOfiTZeIv1EwoKVdBT2GwmNjVf3U0O9deb0trTvAzPvAwPIZcMpgyA36zSoply4BKACXZExkwF0oNAquNDFp8jcubcCiAA4YtTMhKRL8GX_ph8xfQesaVz1LYu6m_vTjvMaNy2ttFmSbuGzpbaatOhLX6RLn76sqRvy40rjB6CbVq0XYHulsbDWtddU9FF12ebc3KS69LhxX5OyMfjw_vs2Zu_Pr3M4rlnmILOM6GOMgxDZCZUURr5PqQ6FCqNFAo0ARrGuMg4N4GWeSq50IhRnubaj5CpXEzI9a53-Hjdo-uSqnAGy1LX2PQuEYwrxUUgYUCnO9TYxjmLedLaotJ2kzBItjqTrc7koHM4uNp392mF2QH_9yf-AO3jcQY</recordid><startdate>20241114</startdate><enddate>20241114</enddate><creator>Aggrawal, Deepika</creator><creator>Saint-Martin, Loïc</creator><creator>Manwar, Rayyan</creator><creator>Siegel, Amanda</creator><creator>Schonfeld, Dan</creator><creator>Avanaki, Kamran</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-8550-8932</orcidid><orcidid>https://orcid.org/0000-0002-1437-8456</orcidid></search><sort><creationdate>20241114</creationdate><title>A Deep Learning-Based Approach to Characterize Skull Physical Properties: A Phantom Study</title><author>Aggrawal, Deepika ; Saint-Martin, Loïc ; Manwar, Rayyan ; Siegel, Amanda ; Schonfeld, Dan ; Avanaki, Kamran</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c180t-c7a9de77e1c789b9550ba738b98e3ec6ec1123d22c6a4fb423aee9fbfa59e18f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Aggrawal, Deepika</creatorcontrib><creatorcontrib>Saint-Martin, Loïc</creatorcontrib><creatorcontrib>Manwar, Rayyan</creatorcontrib><creatorcontrib>Siegel, Amanda</creatorcontrib><creatorcontrib>Schonfeld, Dan</creatorcontrib><creatorcontrib>Avanaki, Kamran</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of biophotonics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Aggrawal, Deepika</au><au>Saint-Martin, Loïc</au><au>Manwar, Rayyan</au><au>Siegel, Amanda</au><au>Schonfeld, Dan</au><au>Avanaki, Kamran</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Deep Learning-Based Approach to Characterize Skull Physical Properties: A Phantom Study</atitle><jtitle>Journal of biophotonics</jtitle><addtitle>J Biophotonics</addtitle><date>2024-11-14</date><risdate>2024</risdate><spage>e202400131</spage><pages>e202400131-</pages><issn>1864-063X</issn><issn>1864-0648</issn><eissn>1864-0648</eissn><abstract>Transcranial ultrasound imaging is a popular method to study cerebral functionality and diagnose brain injuries. However, the detected ultrasound signal is greatly distorted due to the aberration caused by the skull bone. The aberration mechanism mainly depends on thickness and porosity, two important skull physical characteristics. Although skull bone thickness and porosity can be estimated from CT or MRI scans, there is significant value in developing methods for obtaining thickness and porosity information from ultrasound itself. Here, we extracted various features from ultrasound signals using physical skull-mimicking phantoms of a range of thicknesses with embedded porosity-mimicking acoustic mismatches and analyzed them using machine learning (ML) and deep learning (DL) models. The performance evaluation demonstrated that both ML- and DL-trained models could predict the physical characteristics of a variety of skull phantoms with reasonable accuracy. The proposed approach could be expanded upon and utilized for the development of effective skull aberration correction methods.</abstract><cop>Germany</cop><pmid>39540545</pmid><doi>10.1002/jbio.202400131</doi><orcidid>https://orcid.org/0000-0002-8550-8932</orcidid><orcidid>https://orcid.org/0000-0002-1437-8456</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1864-063X |
ispartof | Journal of biophotonics, 2024-11, p.e202400131 |
issn | 1864-063X 1864-0648 1864-0648 |
language | eng |
recordid | cdi_proquest_miscellaneous_3128823640 |
source | Wiley Online Library All Journals |
title | A Deep Learning-Based Approach to Characterize Skull Physical Properties: A Phantom Study |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T10%3A16%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Deep%20Learning-Based%20Approach%20to%20Characterize%20Skull%20Physical%20Properties:%20A%20Phantom%20Study&rft.jtitle=Journal%20of%20biophotonics&rft.au=Aggrawal,%20Deepika&rft.date=2024-11-14&rft.spage=e202400131&rft.pages=e202400131-&rft.issn=1864-063X&rft.eissn=1864-0648&rft_id=info:doi/10.1002/jbio.202400131&rft_dat=%3Cproquest_cross%3E3128823640%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3128823640&rft_id=info:pmid/39540545&rfr_iscdi=true |