Predicting the subcellular location of prokaryotic proteins with DeepLocPro

Protein subcellular location prediction is a widely explored task in bioinformatics because of its importance in proteomics research. We propose DeepLocPro, an extension to the popular method DeepLoc, tailored specifically to archaeal and bacterial organisms. DeepLocPro is a multiclass subcellular l...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bioinformatics (Oxford, England) England), 2024-11, Vol.40 (12)
Hauptverfasser: Moreno, Jaime, Nielsen, Henrik, Winther, Ole, Teufel, Felix
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 12
container_start_page
container_title Bioinformatics (Oxford, England)
container_volume 40
creator Moreno, Jaime
Nielsen, Henrik
Winther, Ole
Teufel, Felix
description Protein subcellular location prediction is a widely explored task in bioinformatics because of its importance in proteomics research. We propose DeepLocPro, an extension to the popular method DeepLoc, tailored specifically to archaeal and bacterial organisms. DeepLocPro is a multiclass subcellular location prediction tool for prokaryotic proteins, trained on experimentally verified data curated from UniProt and PSORTdb. DeepLocPro compares favorably to the PSORTb 3.0 ensemble method, surpassing its performance across multiple metrics in our benchmark experiment. The DeepLocPro prediction tool is available online at https://ku.biolib.com/deeplocpro and https://services.healthtech.dtu.dk/services/DeepLocPro-1.0/.
doi_str_mv 10.1093/bioinformatics/btae677
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3128823638</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3128823638</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1038-73f8bad0c972556704fdf9df02973ef47639d0eca97a2917a2820b00ec19b9cf3</originalsourceid><addsrcrecordid>eNpVkE1PwzAMhiMEYjD4C1OPXMqcps3HEY1PMYkd4FwlacICbTOSVoh_T6YNBBfbsl7brx-EZhguMQgyV8673vrQycHpOFeDNJSxA3SCCWV5yTE-_FNP0GmMbwBQQUWP0YSIqgRG-Al6XAXTOD24_jUb1iaLo9KmbcdWhqz1Om33feZttgn-XYYvn65t68G4Pmafblhn18Zsll6vgj9DR1a20Zzv8xS93N48L-7z5dPdw-JqmWsMhOeMWK5kA1qwoqoog9I2VjQWCsGIsSWjRDRgtBRMFgKnwAtQkDpYKKEtmaKL3d5k5GM0cag7F7euZW_8GGuCC84LQglPUrqT6uBjDMbWm-C69EiNod6CrP-DrPcg0-Bsf2NUnWl-x37IkW_o0HXj</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3128823638</pqid></control><display><type>article</type><title>Predicting the subcellular location of prokaryotic proteins with DeepLocPro</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Access via Oxford University Press (Open Access Collection)</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Moreno, Jaime ; Nielsen, Henrik ; Winther, Ole ; Teufel, Felix</creator><contributor>Cowen, Lenore</contributor><creatorcontrib>Moreno, Jaime ; Nielsen, Henrik ; Winther, Ole ; Teufel, Felix ; Cowen, Lenore</creatorcontrib><description>Protein subcellular location prediction is a widely explored task in bioinformatics because of its importance in proteomics research. We propose DeepLocPro, an extension to the popular method DeepLoc, tailored specifically to archaeal and bacterial organisms. DeepLocPro is a multiclass subcellular location prediction tool for prokaryotic proteins, trained on experimentally verified data curated from UniProt and PSORTdb. DeepLocPro compares favorably to the PSORTb 3.0 ensemble method, surpassing its performance across multiple metrics in our benchmark experiment. The DeepLocPro prediction tool is available online at https://ku.biolib.com/deeplocpro and https://services.healthtech.dtu.dk/services/DeepLocPro-1.0/.</description><identifier>ISSN: 1367-4811</identifier><identifier>EISSN: 1367-4811</identifier><identifier>DOI: 10.1093/bioinformatics/btae677</identifier><identifier>PMID: 39540738</identifier><language>eng</language><publisher>England</publisher><subject>Archaeal Proteins - chemistry ; Archaeal Proteins - metabolism ; Bacterial Proteins - metabolism ; Computational Biology - methods ; Databases, Protein ; Proteomics - methods ; Software</subject><ispartof>Bioinformatics (Oxford, England), 2024-11, Vol.40 (12)</ispartof><rights>The Author(s) 2024. Published by Oxford University Press.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-1275-8065 ; 0000-0002-9412-9643</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,864,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39540738$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Cowen, Lenore</contributor><creatorcontrib>Moreno, Jaime</creatorcontrib><creatorcontrib>Nielsen, Henrik</creatorcontrib><creatorcontrib>Winther, Ole</creatorcontrib><creatorcontrib>Teufel, Felix</creatorcontrib><title>Predicting the subcellular location of prokaryotic proteins with DeepLocPro</title><title>Bioinformatics (Oxford, England)</title><addtitle>Bioinformatics</addtitle><description>Protein subcellular location prediction is a widely explored task in bioinformatics because of its importance in proteomics research. We propose DeepLocPro, an extension to the popular method DeepLoc, tailored specifically to archaeal and bacterial organisms. DeepLocPro is a multiclass subcellular location prediction tool for prokaryotic proteins, trained on experimentally verified data curated from UniProt and PSORTdb. DeepLocPro compares favorably to the PSORTb 3.0 ensemble method, surpassing its performance across multiple metrics in our benchmark experiment. The DeepLocPro prediction tool is available online at https://ku.biolib.com/deeplocpro and https://services.healthtech.dtu.dk/services/DeepLocPro-1.0/.</description><subject>Archaeal Proteins - chemistry</subject><subject>Archaeal Proteins - metabolism</subject><subject>Bacterial Proteins - metabolism</subject><subject>Computational Biology - methods</subject><subject>Databases, Protein</subject><subject>Proteomics - methods</subject><subject>Software</subject><issn>1367-4811</issn><issn>1367-4811</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVkE1PwzAMhiMEYjD4C1OPXMqcps3HEY1PMYkd4FwlacICbTOSVoh_T6YNBBfbsl7brx-EZhguMQgyV8673vrQycHpOFeDNJSxA3SCCWV5yTE-_FNP0GmMbwBQQUWP0YSIqgRG-Al6XAXTOD24_jUb1iaLo9KmbcdWhqz1Om33feZttgn-XYYvn65t68G4Pmafblhn18Zsll6vgj9DR1a20Zzv8xS93N48L-7z5dPdw-JqmWsMhOeMWK5kA1qwoqoog9I2VjQWCsGIsSWjRDRgtBRMFgKnwAtQkDpYKKEtmaKL3d5k5GM0cag7F7euZW_8GGuCC84LQglPUrqT6uBjDMbWm-C69EiNod6CrP-DrPcg0-Bsf2NUnWl-x37IkW_o0HXj</recordid><startdate>20241128</startdate><enddate>20241128</enddate><creator>Moreno, Jaime</creator><creator>Nielsen, Henrik</creator><creator>Winther, Ole</creator><creator>Teufel, Felix</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-1275-8065</orcidid><orcidid>https://orcid.org/0000-0002-9412-9643</orcidid></search><sort><creationdate>20241128</creationdate><title>Predicting the subcellular location of prokaryotic proteins with DeepLocPro</title><author>Moreno, Jaime ; Nielsen, Henrik ; Winther, Ole ; Teufel, Felix</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1038-73f8bad0c972556704fdf9df02973ef47639d0eca97a2917a2820b00ec19b9cf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Archaeal Proteins - chemistry</topic><topic>Archaeal Proteins - metabolism</topic><topic>Bacterial Proteins - metabolism</topic><topic>Computational Biology - methods</topic><topic>Databases, Protein</topic><topic>Proteomics - methods</topic><topic>Software</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Moreno, Jaime</creatorcontrib><creatorcontrib>Nielsen, Henrik</creatorcontrib><creatorcontrib>Winther, Ole</creatorcontrib><creatorcontrib>Teufel, Felix</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Bioinformatics (Oxford, England)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Moreno, Jaime</au><au>Nielsen, Henrik</au><au>Winther, Ole</au><au>Teufel, Felix</au><au>Cowen, Lenore</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Predicting the subcellular location of prokaryotic proteins with DeepLocPro</atitle><jtitle>Bioinformatics (Oxford, England)</jtitle><addtitle>Bioinformatics</addtitle><date>2024-11-28</date><risdate>2024</risdate><volume>40</volume><issue>12</issue><issn>1367-4811</issn><eissn>1367-4811</eissn><abstract>Protein subcellular location prediction is a widely explored task in bioinformatics because of its importance in proteomics research. We propose DeepLocPro, an extension to the popular method DeepLoc, tailored specifically to archaeal and bacterial organisms. DeepLocPro is a multiclass subcellular location prediction tool for prokaryotic proteins, trained on experimentally verified data curated from UniProt and PSORTdb. DeepLocPro compares favorably to the PSORTb 3.0 ensemble method, surpassing its performance across multiple metrics in our benchmark experiment. The DeepLocPro prediction tool is available online at https://ku.biolib.com/deeplocpro and https://services.healthtech.dtu.dk/services/DeepLocPro-1.0/.</abstract><cop>England</cop><pmid>39540738</pmid><doi>10.1093/bioinformatics/btae677</doi><orcidid>https://orcid.org/0000-0003-1275-8065</orcidid><orcidid>https://orcid.org/0000-0002-9412-9643</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1367-4811
ispartof Bioinformatics (Oxford, England), 2024-11, Vol.40 (12)
issn 1367-4811
1367-4811
language eng
recordid cdi_proquest_miscellaneous_3128823638
source MEDLINE; DOAJ Directory of Open Access Journals; Access via Oxford University Press (Open Access Collection); EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection
subjects Archaeal Proteins - chemistry
Archaeal Proteins - metabolism
Bacterial Proteins - metabolism
Computational Biology - methods
Databases, Protein
Proteomics - methods
Software
title Predicting the subcellular location of prokaryotic proteins with DeepLocPro
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T11%3A59%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Predicting%20the%20subcellular%20location%20of%20prokaryotic%20proteins%20with%20DeepLocPro&rft.jtitle=Bioinformatics%20(Oxford,%20England)&rft.au=Moreno,%20Jaime&rft.date=2024-11-28&rft.volume=40&rft.issue=12&rft.issn=1367-4811&rft.eissn=1367-4811&rft_id=info:doi/10.1093/bioinformatics/btae677&rft_dat=%3Cproquest_cross%3E3128823638%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3128823638&rft_id=info:pmid/39540738&rfr_iscdi=true