Ultrasensitive Detection of Blood-Based Alzheimer's Disease Biomarkers: A Comprehensive SERS-Immunoassay Platform Enhanced by Machine Learning

Accurate and early disease detection is crucial for improving patient care, but traditional diagnostic methods often fail to identify diseases in their early stages, leading to delayed treatment outcomes. Early diagnosis using blood derivatives as a source for biomarkers is particularly important fo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS chemical neuroscience 2024-11
Hauptverfasser: Resmi, A N, Nazeer, Shaiju S, Dhushyandhun, M E, Paul, Willi, Chacko, Binu P, Menon, Ramshekhar N, Jayasree, Ramapurath S
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title ACS chemical neuroscience
container_volume
creator Resmi, A N
Nazeer, Shaiju S
Dhushyandhun, M E
Paul, Willi
Chacko, Binu P
Menon, Ramshekhar N
Jayasree, Ramapurath S
description Accurate and early disease detection is crucial for improving patient care, but traditional diagnostic methods often fail to identify diseases in their early stages, leading to delayed treatment outcomes. Early diagnosis using blood derivatives as a source for biomarkers is particularly important for managing Alzheimer's disease (AD). This study introduces a novel approach for the precise and ultrasensitive detection of multiple core AD biomarkers (Aβ , Aβ , p-tau, and t-tau) using surface-enhanced Raman spectroscopy (SERS) combined with machine-learning algorithms. Our method employs an antibody-immobilized aluminum SERS substrate, which offers high precision, sensitivity, and accuracy. The platform achieves an impressive detection limit in the attomolar (aM) range and spans a wide dynamic range from aM to micromolar (μM) concentrations. This ultrasensitive and specific SERS immunoassay platform shows promise for identifying mild cognitive impairment (MCI), a potential precursor to AD, from blood plasma. Machine-learning algorithms applied to the spectral data enhance the differentiation of MCI from AD and healthy controls, yielding excellent sensitivity and specificity. Our integrated SERS-machine-learning approach, with its interpretability, advances AD research and underscores the effectiveness of a cost-efficient, easy-to-prepare Al-SERS substrate for clinical AD detection.
doi_str_mv 10.1021/acschemneuro.4c00369
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3128819534</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3128819534</sourcerecordid><originalsourceid>FETCH-LOGICAL-c186t-f06cccd90abd70072546bfe15ee4d0641781f36ece0b9cde042a5865dd6fc11f3</originalsourceid><addsrcrecordid>eNpNUctOwzAQtBCIQuEPEPINLil2k7gJt754SEUgHufIsTfEENvFTpDKR_DNuKKgnna1MzurnUHohJIBJUN6wYUXNWgDnbODRBASs3wHHdA8yaIRzePdrb6HDr1_I4TlJGP7qBfnaRzm5AB9vzSt4x6MV636BDyDFkSrrMG2wpPGWhlNAizxuPmqQWlwZx7PlIcwxBNlNXfv4PwlHuOp1UsH9VoqCD3NH5-iW607Y7n3fIUfGt5W1mk8NzU3IkiWK3zHRa0M4AVwZ5R5PUJ7FW88HG9qH71czZ-nN9Hi_vp2Ol5EgmasjSrChBAyJ7yUI0JGwzRhZQU0BUgkYQkdZbSKGQggZS4kkGTI04ylUrJK0AD10fmv7tLZjw58W2jlBTQNN2A7X8R0mGU0uJQEavJLFc5676Aqlk6Ft1cFJcU6iWI7iWKTRFg73VzoSg3yf-nP-vgH2teLUQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3128819534</pqid></control><display><type>article</type><title>Ultrasensitive Detection of Blood-Based Alzheimer's Disease Biomarkers: A Comprehensive SERS-Immunoassay Platform Enhanced by Machine Learning</title><source>American Chemical Society Journals</source><creator>Resmi, A N ; Nazeer, Shaiju S ; Dhushyandhun, M E ; Paul, Willi ; Chacko, Binu P ; Menon, Ramshekhar N ; Jayasree, Ramapurath S</creator><creatorcontrib>Resmi, A N ; Nazeer, Shaiju S ; Dhushyandhun, M E ; Paul, Willi ; Chacko, Binu P ; Menon, Ramshekhar N ; Jayasree, Ramapurath S</creatorcontrib><description>Accurate and early disease detection is crucial for improving patient care, but traditional diagnostic methods often fail to identify diseases in their early stages, leading to delayed treatment outcomes. Early diagnosis using blood derivatives as a source for biomarkers is particularly important for managing Alzheimer's disease (AD). This study introduces a novel approach for the precise and ultrasensitive detection of multiple core AD biomarkers (Aβ , Aβ , p-tau, and t-tau) using surface-enhanced Raman spectroscopy (SERS) combined with machine-learning algorithms. Our method employs an antibody-immobilized aluminum SERS substrate, which offers high precision, sensitivity, and accuracy. The platform achieves an impressive detection limit in the attomolar (aM) range and spans a wide dynamic range from aM to micromolar (μM) concentrations. This ultrasensitive and specific SERS immunoassay platform shows promise for identifying mild cognitive impairment (MCI), a potential precursor to AD, from blood plasma. Machine-learning algorithms applied to the spectral data enhance the differentiation of MCI from AD and healthy controls, yielding excellent sensitivity and specificity. Our integrated SERS-machine-learning approach, with its interpretability, advances AD research and underscores the effectiveness of a cost-efficient, easy-to-prepare Al-SERS substrate for clinical AD detection.</description><identifier>ISSN: 1948-7193</identifier><identifier>EISSN: 1948-7193</identifier><identifier>DOI: 10.1021/acschemneuro.4c00369</identifier><identifier>PMID: 39537190</identifier><language>eng</language><publisher>United States</publisher><ispartof>ACS chemical neuroscience, 2024-11</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c186t-f06cccd90abd70072546bfe15ee4d0641781f36ece0b9cde042a5865dd6fc11f3</cites><orcidid>0000-0001-6810-9879 ; 0000-0002-8409-1426</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,2766,27929,27930</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39537190$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Resmi, A N</creatorcontrib><creatorcontrib>Nazeer, Shaiju S</creatorcontrib><creatorcontrib>Dhushyandhun, M E</creatorcontrib><creatorcontrib>Paul, Willi</creatorcontrib><creatorcontrib>Chacko, Binu P</creatorcontrib><creatorcontrib>Menon, Ramshekhar N</creatorcontrib><creatorcontrib>Jayasree, Ramapurath S</creatorcontrib><title>Ultrasensitive Detection of Blood-Based Alzheimer's Disease Biomarkers: A Comprehensive SERS-Immunoassay Platform Enhanced by Machine Learning</title><title>ACS chemical neuroscience</title><addtitle>ACS Chem Neurosci</addtitle><description>Accurate and early disease detection is crucial for improving patient care, but traditional diagnostic methods often fail to identify diseases in their early stages, leading to delayed treatment outcomes. Early diagnosis using blood derivatives as a source for biomarkers is particularly important for managing Alzheimer's disease (AD). This study introduces a novel approach for the precise and ultrasensitive detection of multiple core AD biomarkers (Aβ , Aβ , p-tau, and t-tau) using surface-enhanced Raman spectroscopy (SERS) combined with machine-learning algorithms. Our method employs an antibody-immobilized aluminum SERS substrate, which offers high precision, sensitivity, and accuracy. The platform achieves an impressive detection limit in the attomolar (aM) range and spans a wide dynamic range from aM to micromolar (μM) concentrations. This ultrasensitive and specific SERS immunoassay platform shows promise for identifying mild cognitive impairment (MCI), a potential precursor to AD, from blood plasma. Machine-learning algorithms applied to the spectral data enhance the differentiation of MCI from AD and healthy controls, yielding excellent sensitivity and specificity. Our integrated SERS-machine-learning approach, with its interpretability, advances AD research and underscores the effectiveness of a cost-efficient, easy-to-prepare Al-SERS substrate for clinical AD detection.</description><issn>1948-7193</issn><issn>1948-7193</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpNUctOwzAQtBCIQuEPEPINLil2k7gJt754SEUgHufIsTfEENvFTpDKR_DNuKKgnna1MzurnUHohJIBJUN6wYUXNWgDnbODRBASs3wHHdA8yaIRzePdrb6HDr1_I4TlJGP7qBfnaRzm5AB9vzSt4x6MV636BDyDFkSrrMG2wpPGWhlNAizxuPmqQWlwZx7PlIcwxBNlNXfv4PwlHuOp1UsH9VoqCD3NH5-iW607Y7n3fIUfGt5W1mk8NzU3IkiWK3zHRa0M4AVwZ5R5PUJ7FW88HG9qH71czZ-nN9Hi_vp2Ol5EgmasjSrChBAyJ7yUI0JGwzRhZQU0BUgkYQkdZbSKGQggZS4kkGTI04ylUrJK0AD10fmv7tLZjw58W2jlBTQNN2A7X8R0mGU0uJQEavJLFc5676Aqlk6Ft1cFJcU6iWI7iWKTRFg73VzoSg3yf-nP-vgH2teLUQ</recordid><startdate>20241113</startdate><enddate>20241113</enddate><creator>Resmi, A N</creator><creator>Nazeer, Shaiju S</creator><creator>Dhushyandhun, M E</creator><creator>Paul, Willi</creator><creator>Chacko, Binu P</creator><creator>Menon, Ramshekhar N</creator><creator>Jayasree, Ramapurath S</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-6810-9879</orcidid><orcidid>https://orcid.org/0000-0002-8409-1426</orcidid></search><sort><creationdate>20241113</creationdate><title>Ultrasensitive Detection of Blood-Based Alzheimer's Disease Biomarkers: A Comprehensive SERS-Immunoassay Platform Enhanced by Machine Learning</title><author>Resmi, A N ; Nazeer, Shaiju S ; Dhushyandhun, M E ; Paul, Willi ; Chacko, Binu P ; Menon, Ramshekhar N ; Jayasree, Ramapurath S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c186t-f06cccd90abd70072546bfe15ee4d0641781f36ece0b9cde042a5865dd6fc11f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Resmi, A N</creatorcontrib><creatorcontrib>Nazeer, Shaiju S</creatorcontrib><creatorcontrib>Dhushyandhun, M E</creatorcontrib><creatorcontrib>Paul, Willi</creatorcontrib><creatorcontrib>Chacko, Binu P</creatorcontrib><creatorcontrib>Menon, Ramshekhar N</creatorcontrib><creatorcontrib>Jayasree, Ramapurath S</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS chemical neuroscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Resmi, A N</au><au>Nazeer, Shaiju S</au><au>Dhushyandhun, M E</au><au>Paul, Willi</au><au>Chacko, Binu P</au><au>Menon, Ramshekhar N</au><au>Jayasree, Ramapurath S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ultrasensitive Detection of Blood-Based Alzheimer's Disease Biomarkers: A Comprehensive SERS-Immunoassay Platform Enhanced by Machine Learning</atitle><jtitle>ACS chemical neuroscience</jtitle><addtitle>ACS Chem Neurosci</addtitle><date>2024-11-13</date><risdate>2024</risdate><issn>1948-7193</issn><eissn>1948-7193</eissn><abstract>Accurate and early disease detection is crucial for improving patient care, but traditional diagnostic methods often fail to identify diseases in their early stages, leading to delayed treatment outcomes. Early diagnosis using blood derivatives as a source for biomarkers is particularly important for managing Alzheimer's disease (AD). This study introduces a novel approach for the precise and ultrasensitive detection of multiple core AD biomarkers (Aβ , Aβ , p-tau, and t-tau) using surface-enhanced Raman spectroscopy (SERS) combined with machine-learning algorithms. Our method employs an antibody-immobilized aluminum SERS substrate, which offers high precision, sensitivity, and accuracy. The platform achieves an impressive detection limit in the attomolar (aM) range and spans a wide dynamic range from aM to micromolar (μM) concentrations. This ultrasensitive and specific SERS immunoassay platform shows promise for identifying mild cognitive impairment (MCI), a potential precursor to AD, from blood plasma. Machine-learning algorithms applied to the spectral data enhance the differentiation of MCI from AD and healthy controls, yielding excellent sensitivity and specificity. Our integrated SERS-machine-learning approach, with its interpretability, advances AD research and underscores the effectiveness of a cost-efficient, easy-to-prepare Al-SERS substrate for clinical AD detection.</abstract><cop>United States</cop><pmid>39537190</pmid><doi>10.1021/acschemneuro.4c00369</doi><orcidid>https://orcid.org/0000-0001-6810-9879</orcidid><orcidid>https://orcid.org/0000-0002-8409-1426</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1948-7193
ispartof ACS chemical neuroscience, 2024-11
issn 1948-7193
1948-7193
language eng
recordid cdi_proquest_miscellaneous_3128819534
source American Chemical Society Journals
title Ultrasensitive Detection of Blood-Based Alzheimer's Disease Biomarkers: A Comprehensive SERS-Immunoassay Platform Enhanced by Machine Learning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T12%3A40%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ultrasensitive%20Detection%20of%20Blood-Based%20Alzheimer's%20Disease%20Biomarkers:%20A%20Comprehensive%20SERS-Immunoassay%20Platform%20Enhanced%20by%20Machine%20Learning&rft.jtitle=ACS%20chemical%20neuroscience&rft.au=Resmi,%20A%20N&rft.date=2024-11-13&rft.issn=1948-7193&rft.eissn=1948-7193&rft_id=info:doi/10.1021/acschemneuro.4c00369&rft_dat=%3Cproquest_cross%3E3128819534%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3128819534&rft_id=info:pmid/39537190&rfr_iscdi=true