Colossal Strain Tuning of Ferroelectric Transitions in KNbO3 Thin Films
Strong coupling between polarization (P) and strain (ɛ) in ferroelectric complex oxides offers unique opportunities to dramatically tune their properties. Here colossal strain tuning of ferroelectricity in epitaxial KNbO3 thin films grown by sub‐oxide molecular beam epitaxy is demonstrated. While bu...
Gespeichert in:
Veröffentlicht in: | Advanced materials (Weinheim) 2024-12, Vol.36 (52), p.e2408664-n/a |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 52 |
container_start_page | e2408664 |
container_title | Advanced materials (Weinheim) |
container_volume | 36 |
creator | Hazra, Sankalpa Schwaigert, Tobias Ross, Aiden Lu, Haidong Saha, Utkarsh Trinquet, Victor Akkopru‐Akgun, Betul Gregory, Benjamin Z. Mangu, Anudeep Sarker, Suchismita Kuznetsova, Tatiana Sarker, Saugata Li, Xin Barone, Matthew R. Xu, Xiaoshan Freeland, John W. Engel‐Herbert, Roman Lindenberg, Aaron M. Singer, Andrej Trolier‐McKinstry, Susan Muller, David A. Rignanese, Gian‐Marco Salmani‐Rezaie, Salva Stoica, Vladimir A. Gruverman, Alexei Chen, Long‐Qing Schlom, Darrell G. Gopalan, Venkatraman |
description | Strong coupling between polarization (P) and strain (ɛ) in ferroelectric complex oxides offers unique opportunities to dramatically tune their properties. Here colossal strain tuning of ferroelectricity in epitaxial KNbO3 thin films grown by sub‐oxide molecular beam epitaxy is demonstrated. While bulk KNbO3 exhibits three ferroelectric transitions and a Curie temperature (Tc) of ≈676 K, phase‐field modeling predicts that a biaxial strain of as little as −0.6% pushes its Tc > 975 K, its decomposition temperature in air, and for −1.4% strain, to Tc > 1325 K, its melting point. Furthermore, a strain of −1.5% can stabilize a single phase throughout the entire temperature range of its stability. A combination of temperature‐dependent second harmonic generation measurements, synchrotron‐based X‐ray reciprocal space mapping, ferroelectric measurements, and transmission electron microscopy reveal a single tetragonal phase from 10 K to 975 K, an enhancement of ≈46% in the tetragonal phase remanent polarization (Pr), and a ≈200% enhancement in its optical second harmonic generation coefficients over bulk values. These properties in a lead‐free system, but with properties comparable or superior to lead‐based systems, make it an attractive candidate for applications ranging from high‐temperature ferroelectric memory to cryogenic temperature quantum computing.
Colossal strain tuning of ferroelectricity is demonstrated in biaxially compressive strained epitaxial KNbO3 thin films, demonstrating a dramatic strain enhancement of ferroelectric polarization and the Curie temperature, eliminating all bulk phase transitions and stabilizing a single tetragonal phase from 5 K to 975 K. |
doi_str_mv | 10.1002/adma.202408664 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_3128813584</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3128813584</sourcerecordid><originalsourceid>FETCH-LOGICAL-p2924-2f915865363a53c47bdf5f9806de31835961822901e5cd36c6e734757a6db2443</originalsourceid><addsrcrecordid>eNpdkctPAjEQxhujEXxcPW_ixcti37QnQ1DQiHIQz03Z7UJJt8WW1fDfuwRCopd5ZH75ZiYfADcI9hCE-F6Xte5hiCkUnNMT0EUMo5xCyU5BF0rCcsmp6ICLlFYQQskhPwcdIhkhVKAuGA-DCylpl31sorY-mzXe-kUWqmxkYgzGmWITbZHNovbJbmzwKWux1_f5lGSzZVuOrKvTFTirtEvm-pAvwefoaTZ8zifT8ctwMMnXWGKa40oiJjgjnGhGCtqflxWrpIC8NAQJwiRHAmMJkWFFSXjBTZ_QPutrXs4xpeQSPOx11828NmVhfHu2U-toax23Kmir_k68XapF-FYIcYEIhq3C3UEhhq_GpI2qbSqMc9qb0CRFEBYtycRu2e0_dBWa6Nv_WopKznahpeSe-rHObI-nIKh2DqmdQ-rokBo8vg2OHfkFh26Dow</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3149651496</pqid></control><display><type>article</type><title>Colossal Strain Tuning of Ferroelectric Transitions in KNbO3 Thin Films</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Hazra, Sankalpa ; Schwaigert, Tobias ; Ross, Aiden ; Lu, Haidong ; Saha, Utkarsh ; Trinquet, Victor ; Akkopru‐Akgun, Betul ; Gregory, Benjamin Z. ; Mangu, Anudeep ; Sarker, Suchismita ; Kuznetsova, Tatiana ; Sarker, Saugata ; Li, Xin ; Barone, Matthew R. ; Xu, Xiaoshan ; Freeland, John W. ; Engel‐Herbert, Roman ; Lindenberg, Aaron M. ; Singer, Andrej ; Trolier‐McKinstry, Susan ; Muller, David A. ; Rignanese, Gian‐Marco ; Salmani‐Rezaie, Salva ; Stoica, Vladimir A. ; Gruverman, Alexei ; Chen, Long‐Qing ; Schlom, Darrell G. ; Gopalan, Venkatraman</creator><creatorcontrib>Hazra, Sankalpa ; Schwaigert, Tobias ; Ross, Aiden ; Lu, Haidong ; Saha, Utkarsh ; Trinquet, Victor ; Akkopru‐Akgun, Betul ; Gregory, Benjamin Z. ; Mangu, Anudeep ; Sarker, Suchismita ; Kuznetsova, Tatiana ; Sarker, Saugata ; Li, Xin ; Barone, Matthew R. ; Xu, Xiaoshan ; Freeland, John W. ; Engel‐Herbert, Roman ; Lindenberg, Aaron M. ; Singer, Andrej ; Trolier‐McKinstry, Susan ; Muller, David A. ; Rignanese, Gian‐Marco ; Salmani‐Rezaie, Salva ; Stoica, Vladimir A. ; Gruverman, Alexei ; Chen, Long‐Qing ; Schlom, Darrell G. ; Gopalan, Venkatraman</creatorcontrib><description>Strong coupling between polarization (P) and strain (ɛ) in ferroelectric complex oxides offers unique opportunities to dramatically tune their properties. Here colossal strain tuning of ferroelectricity in epitaxial KNbO3 thin films grown by sub‐oxide molecular beam epitaxy is demonstrated. While bulk KNbO3 exhibits three ferroelectric transitions and a Curie temperature (Tc) of ≈676 K, phase‐field modeling predicts that a biaxial strain of as little as −0.6% pushes its Tc > 975 K, its decomposition temperature in air, and for −1.4% strain, to Tc > 1325 K, its melting point. Furthermore, a strain of −1.5% can stabilize a single phase throughout the entire temperature range of its stability. A combination of temperature‐dependent second harmonic generation measurements, synchrotron‐based X‐ray reciprocal space mapping, ferroelectric measurements, and transmission electron microscopy reveal a single tetragonal phase from 10 K to 975 K, an enhancement of ≈46% in the tetragonal phase remanent polarization (Pr), and a ≈200% enhancement in its optical second harmonic generation coefficients over bulk values. These properties in a lead‐free system, but with properties comparable or superior to lead‐based systems, make it an attractive candidate for applications ranging from high‐temperature ferroelectric memory to cryogenic temperature quantum computing.
Colossal strain tuning of ferroelectricity is demonstrated in biaxially compressive strained epitaxial KNbO3 thin films, demonstrating a dramatic strain enhancement of ferroelectric polarization and the Curie temperature, eliminating all bulk phase transitions and stabilizing a single tetragonal phase from 5 K to 975 K.</description><identifier>ISSN: 0935-9648</identifier><identifier>ISSN: 1521-4095</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.202408664</identifier><identifier>PMID: 39533481</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Cryogenic temperature ; Curie temperature ; Electrons ; Epitaxial growth ; Ferroelectric materials ; Ferroelectricity ; ferroelectrics ; Melting points ; Molecular beam epitaxy ; Optical properties ; phase‐field modeling ; Polarization ; Potassium niobates ; Quantum computing ; Second harmonic generation ; strain‐tuning ; Temperature dependence ; Thin films ; Tuning</subject><ispartof>Advanced materials (Weinheim), 2024-12, Vol.36 (52), p.e2408664-n/a</ispartof><rights>2024 The Author(s). Advanced Materials published by Wiley‐VCH GmbH</rights><rights>2024. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2024 The Author(s). Advanced Materials published by Wiley‐VCH GmbH.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-3317-9134 ; 0000-0002-9126-8058 ; 0000-0002-1422-1205 ; 0000-0003-3359-3781 ; 0009-0001-8195-6172 ; 0000-0003-1221-181X ; 0000-0003-0492-2750 ; 0000-0003-4129-0473 ; 0000-0003-3085-2207 ; 0000-0003-2493-6113 ; 0000-0003-0580-0229 ; 0000-0002-2965-9242 ; 0000-0003-4814-5308 ; 0000-0002-2734-7819 ; 0000-0002-9349-8391 ; 0000-0001-6866-3677</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadma.202408664$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadma.202408664$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>230,314,778,782,883,1414,27907,27908,45557,45558</link.rule.ids></links><search><creatorcontrib>Hazra, Sankalpa</creatorcontrib><creatorcontrib>Schwaigert, Tobias</creatorcontrib><creatorcontrib>Ross, Aiden</creatorcontrib><creatorcontrib>Lu, Haidong</creatorcontrib><creatorcontrib>Saha, Utkarsh</creatorcontrib><creatorcontrib>Trinquet, Victor</creatorcontrib><creatorcontrib>Akkopru‐Akgun, Betul</creatorcontrib><creatorcontrib>Gregory, Benjamin Z.</creatorcontrib><creatorcontrib>Mangu, Anudeep</creatorcontrib><creatorcontrib>Sarker, Suchismita</creatorcontrib><creatorcontrib>Kuznetsova, Tatiana</creatorcontrib><creatorcontrib>Sarker, Saugata</creatorcontrib><creatorcontrib>Li, Xin</creatorcontrib><creatorcontrib>Barone, Matthew R.</creatorcontrib><creatorcontrib>Xu, Xiaoshan</creatorcontrib><creatorcontrib>Freeland, John W.</creatorcontrib><creatorcontrib>Engel‐Herbert, Roman</creatorcontrib><creatorcontrib>Lindenberg, Aaron M.</creatorcontrib><creatorcontrib>Singer, Andrej</creatorcontrib><creatorcontrib>Trolier‐McKinstry, Susan</creatorcontrib><creatorcontrib>Muller, David A.</creatorcontrib><creatorcontrib>Rignanese, Gian‐Marco</creatorcontrib><creatorcontrib>Salmani‐Rezaie, Salva</creatorcontrib><creatorcontrib>Stoica, Vladimir A.</creatorcontrib><creatorcontrib>Gruverman, Alexei</creatorcontrib><creatorcontrib>Chen, Long‐Qing</creatorcontrib><creatorcontrib>Schlom, Darrell G.</creatorcontrib><creatorcontrib>Gopalan, Venkatraman</creatorcontrib><title>Colossal Strain Tuning of Ferroelectric Transitions in KNbO3 Thin Films</title><title>Advanced materials (Weinheim)</title><description>Strong coupling between polarization (P) and strain (ɛ) in ferroelectric complex oxides offers unique opportunities to dramatically tune their properties. Here colossal strain tuning of ferroelectricity in epitaxial KNbO3 thin films grown by sub‐oxide molecular beam epitaxy is demonstrated. While bulk KNbO3 exhibits three ferroelectric transitions and a Curie temperature (Tc) of ≈676 K, phase‐field modeling predicts that a biaxial strain of as little as −0.6% pushes its Tc > 975 K, its decomposition temperature in air, and for −1.4% strain, to Tc > 1325 K, its melting point. Furthermore, a strain of −1.5% can stabilize a single phase throughout the entire temperature range of its stability. A combination of temperature‐dependent second harmonic generation measurements, synchrotron‐based X‐ray reciprocal space mapping, ferroelectric measurements, and transmission electron microscopy reveal a single tetragonal phase from 10 K to 975 K, an enhancement of ≈46% in the tetragonal phase remanent polarization (Pr), and a ≈200% enhancement in its optical second harmonic generation coefficients over bulk values. These properties in a lead‐free system, but with properties comparable or superior to lead‐based systems, make it an attractive candidate for applications ranging from high‐temperature ferroelectric memory to cryogenic temperature quantum computing.
Colossal strain tuning of ferroelectricity is demonstrated in biaxially compressive strained epitaxial KNbO3 thin films, demonstrating a dramatic strain enhancement of ferroelectric polarization and the Curie temperature, eliminating all bulk phase transitions and stabilizing a single tetragonal phase from 5 K to 975 K.</description><subject>Cryogenic temperature</subject><subject>Curie temperature</subject><subject>Electrons</subject><subject>Epitaxial growth</subject><subject>Ferroelectric materials</subject><subject>Ferroelectricity</subject><subject>ferroelectrics</subject><subject>Melting points</subject><subject>Molecular beam epitaxy</subject><subject>Optical properties</subject><subject>phase‐field modeling</subject><subject>Polarization</subject><subject>Potassium niobates</subject><subject>Quantum computing</subject><subject>Second harmonic generation</subject><subject>strain‐tuning</subject><subject>Temperature dependence</subject><subject>Thin films</subject><subject>Tuning</subject><issn>0935-9648</issn><issn>1521-4095</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNpdkctPAjEQxhujEXxcPW_ixcti37QnQ1DQiHIQz03Z7UJJt8WW1fDfuwRCopd5ZH75ZiYfADcI9hCE-F6Xte5hiCkUnNMT0EUMo5xCyU5BF0rCcsmp6ICLlFYQQskhPwcdIhkhVKAuGA-DCylpl31sorY-mzXe-kUWqmxkYgzGmWITbZHNovbJbmzwKWux1_f5lGSzZVuOrKvTFTirtEvm-pAvwefoaTZ8zifT8ctwMMnXWGKa40oiJjgjnGhGCtqflxWrpIC8NAQJwiRHAmMJkWFFSXjBTZ_QPutrXs4xpeQSPOx11828NmVhfHu2U-toax23Kmir_k68XapF-FYIcYEIhq3C3UEhhq_GpI2qbSqMc9qb0CRFEBYtycRu2e0_dBWa6Nv_WopKznahpeSe-rHObI-nIKh2DqmdQ-rokBo8vg2OHfkFh26Dow</recordid><startdate>20241201</startdate><enddate>20241201</enddate><creator>Hazra, Sankalpa</creator><creator>Schwaigert, Tobias</creator><creator>Ross, Aiden</creator><creator>Lu, Haidong</creator><creator>Saha, Utkarsh</creator><creator>Trinquet, Victor</creator><creator>Akkopru‐Akgun, Betul</creator><creator>Gregory, Benjamin Z.</creator><creator>Mangu, Anudeep</creator><creator>Sarker, Suchismita</creator><creator>Kuznetsova, Tatiana</creator><creator>Sarker, Saugata</creator><creator>Li, Xin</creator><creator>Barone, Matthew R.</creator><creator>Xu, Xiaoshan</creator><creator>Freeland, John W.</creator><creator>Engel‐Herbert, Roman</creator><creator>Lindenberg, Aaron M.</creator><creator>Singer, Andrej</creator><creator>Trolier‐McKinstry, Susan</creator><creator>Muller, David A.</creator><creator>Rignanese, Gian‐Marco</creator><creator>Salmani‐Rezaie, Salva</creator><creator>Stoica, Vladimir A.</creator><creator>Gruverman, Alexei</creator><creator>Chen, Long‐Qing</creator><creator>Schlom, Darrell G.</creator><creator>Gopalan, Venkatraman</creator><general>Wiley Subscription Services, Inc</general><general>John Wiley and Sons Inc</general><scope>24P</scope><scope>WIN</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-3317-9134</orcidid><orcidid>https://orcid.org/0000-0002-9126-8058</orcidid><orcidid>https://orcid.org/0000-0002-1422-1205</orcidid><orcidid>https://orcid.org/0000-0003-3359-3781</orcidid><orcidid>https://orcid.org/0009-0001-8195-6172</orcidid><orcidid>https://orcid.org/0000-0003-1221-181X</orcidid><orcidid>https://orcid.org/0000-0003-0492-2750</orcidid><orcidid>https://orcid.org/0000-0003-4129-0473</orcidid><orcidid>https://orcid.org/0000-0003-3085-2207</orcidid><orcidid>https://orcid.org/0000-0003-2493-6113</orcidid><orcidid>https://orcid.org/0000-0003-0580-0229</orcidid><orcidid>https://orcid.org/0000-0002-2965-9242</orcidid><orcidid>https://orcid.org/0000-0003-4814-5308</orcidid><orcidid>https://orcid.org/0000-0002-2734-7819</orcidid><orcidid>https://orcid.org/0000-0002-9349-8391</orcidid><orcidid>https://orcid.org/0000-0001-6866-3677</orcidid></search><sort><creationdate>20241201</creationdate><title>Colossal Strain Tuning of Ferroelectric Transitions in KNbO3 Thin Films</title><author>Hazra, Sankalpa ; Schwaigert, Tobias ; Ross, Aiden ; Lu, Haidong ; Saha, Utkarsh ; Trinquet, Victor ; Akkopru‐Akgun, Betul ; Gregory, Benjamin Z. ; Mangu, Anudeep ; Sarker, Suchismita ; Kuznetsova, Tatiana ; Sarker, Saugata ; Li, Xin ; Barone, Matthew R. ; Xu, Xiaoshan ; Freeland, John W. ; Engel‐Herbert, Roman ; Lindenberg, Aaron M. ; Singer, Andrej ; Trolier‐McKinstry, Susan ; Muller, David A. ; Rignanese, Gian‐Marco ; Salmani‐Rezaie, Salva ; Stoica, Vladimir A. ; Gruverman, Alexei ; Chen, Long‐Qing ; Schlom, Darrell G. ; Gopalan, Venkatraman</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p2924-2f915865363a53c47bdf5f9806de31835961822901e5cd36c6e734757a6db2443</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Cryogenic temperature</topic><topic>Curie temperature</topic><topic>Electrons</topic><topic>Epitaxial growth</topic><topic>Ferroelectric materials</topic><topic>Ferroelectricity</topic><topic>ferroelectrics</topic><topic>Melting points</topic><topic>Molecular beam epitaxy</topic><topic>Optical properties</topic><topic>phase‐field modeling</topic><topic>Polarization</topic><topic>Potassium niobates</topic><topic>Quantum computing</topic><topic>Second harmonic generation</topic><topic>strain‐tuning</topic><topic>Temperature dependence</topic><topic>Thin films</topic><topic>Tuning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hazra, Sankalpa</creatorcontrib><creatorcontrib>Schwaigert, Tobias</creatorcontrib><creatorcontrib>Ross, Aiden</creatorcontrib><creatorcontrib>Lu, Haidong</creatorcontrib><creatorcontrib>Saha, Utkarsh</creatorcontrib><creatorcontrib>Trinquet, Victor</creatorcontrib><creatorcontrib>Akkopru‐Akgun, Betul</creatorcontrib><creatorcontrib>Gregory, Benjamin Z.</creatorcontrib><creatorcontrib>Mangu, Anudeep</creatorcontrib><creatorcontrib>Sarker, Suchismita</creatorcontrib><creatorcontrib>Kuznetsova, Tatiana</creatorcontrib><creatorcontrib>Sarker, Saugata</creatorcontrib><creatorcontrib>Li, Xin</creatorcontrib><creatorcontrib>Barone, Matthew R.</creatorcontrib><creatorcontrib>Xu, Xiaoshan</creatorcontrib><creatorcontrib>Freeland, John W.</creatorcontrib><creatorcontrib>Engel‐Herbert, Roman</creatorcontrib><creatorcontrib>Lindenberg, Aaron M.</creatorcontrib><creatorcontrib>Singer, Andrej</creatorcontrib><creatorcontrib>Trolier‐McKinstry, Susan</creatorcontrib><creatorcontrib>Muller, David A.</creatorcontrib><creatorcontrib>Rignanese, Gian‐Marco</creatorcontrib><creatorcontrib>Salmani‐Rezaie, Salva</creatorcontrib><creatorcontrib>Stoica, Vladimir A.</creatorcontrib><creatorcontrib>Gruverman, Alexei</creatorcontrib><creatorcontrib>Chen, Long‐Qing</creatorcontrib><creatorcontrib>Schlom, Darrell G.</creatorcontrib><creatorcontrib>Gopalan, Venkatraman</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Wiley Online Library Free Content</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hazra, Sankalpa</au><au>Schwaigert, Tobias</au><au>Ross, Aiden</au><au>Lu, Haidong</au><au>Saha, Utkarsh</au><au>Trinquet, Victor</au><au>Akkopru‐Akgun, Betul</au><au>Gregory, Benjamin Z.</au><au>Mangu, Anudeep</au><au>Sarker, Suchismita</au><au>Kuznetsova, Tatiana</au><au>Sarker, Saugata</au><au>Li, Xin</au><au>Barone, Matthew R.</au><au>Xu, Xiaoshan</au><au>Freeland, John W.</au><au>Engel‐Herbert, Roman</au><au>Lindenberg, Aaron M.</au><au>Singer, Andrej</au><au>Trolier‐McKinstry, Susan</au><au>Muller, David A.</au><au>Rignanese, Gian‐Marco</au><au>Salmani‐Rezaie, Salva</au><au>Stoica, Vladimir A.</au><au>Gruverman, Alexei</au><au>Chen, Long‐Qing</au><au>Schlom, Darrell G.</au><au>Gopalan, Venkatraman</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Colossal Strain Tuning of Ferroelectric Transitions in KNbO3 Thin Films</atitle><jtitle>Advanced materials (Weinheim)</jtitle><date>2024-12-01</date><risdate>2024</risdate><volume>36</volume><issue>52</issue><spage>e2408664</spage><epage>n/a</epage><pages>e2408664-n/a</pages><issn>0935-9648</issn><issn>1521-4095</issn><eissn>1521-4095</eissn><abstract>Strong coupling between polarization (P) and strain (ɛ) in ferroelectric complex oxides offers unique opportunities to dramatically tune their properties. Here colossal strain tuning of ferroelectricity in epitaxial KNbO3 thin films grown by sub‐oxide molecular beam epitaxy is demonstrated. While bulk KNbO3 exhibits three ferroelectric transitions and a Curie temperature (Tc) of ≈676 K, phase‐field modeling predicts that a biaxial strain of as little as −0.6% pushes its Tc > 975 K, its decomposition temperature in air, and for −1.4% strain, to Tc > 1325 K, its melting point. Furthermore, a strain of −1.5% can stabilize a single phase throughout the entire temperature range of its stability. A combination of temperature‐dependent second harmonic generation measurements, synchrotron‐based X‐ray reciprocal space mapping, ferroelectric measurements, and transmission electron microscopy reveal a single tetragonal phase from 10 K to 975 K, an enhancement of ≈46% in the tetragonal phase remanent polarization (Pr), and a ≈200% enhancement in its optical second harmonic generation coefficients over bulk values. These properties in a lead‐free system, but with properties comparable or superior to lead‐based systems, make it an attractive candidate for applications ranging from high‐temperature ferroelectric memory to cryogenic temperature quantum computing.
Colossal strain tuning of ferroelectricity is demonstrated in biaxially compressive strained epitaxial KNbO3 thin films, demonstrating a dramatic strain enhancement of ferroelectric polarization and the Curie temperature, eliminating all bulk phase transitions and stabilizing a single tetragonal phase from 5 K to 975 K.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><pmid>39533481</pmid><doi>10.1002/adma.202408664</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-3317-9134</orcidid><orcidid>https://orcid.org/0000-0002-9126-8058</orcidid><orcidid>https://orcid.org/0000-0002-1422-1205</orcidid><orcidid>https://orcid.org/0000-0003-3359-3781</orcidid><orcidid>https://orcid.org/0009-0001-8195-6172</orcidid><orcidid>https://orcid.org/0000-0003-1221-181X</orcidid><orcidid>https://orcid.org/0000-0003-0492-2750</orcidid><orcidid>https://orcid.org/0000-0003-4129-0473</orcidid><orcidid>https://orcid.org/0000-0003-3085-2207</orcidid><orcidid>https://orcid.org/0000-0003-2493-6113</orcidid><orcidid>https://orcid.org/0000-0003-0580-0229</orcidid><orcidid>https://orcid.org/0000-0002-2965-9242</orcidid><orcidid>https://orcid.org/0000-0003-4814-5308</orcidid><orcidid>https://orcid.org/0000-0002-2734-7819</orcidid><orcidid>https://orcid.org/0000-0002-9349-8391</orcidid><orcidid>https://orcid.org/0000-0001-6866-3677</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0935-9648 |
ispartof | Advanced materials (Weinheim), 2024-12, Vol.36 (52), p.e2408664-n/a |
issn | 0935-9648 1521-4095 1521-4095 |
language | eng |
recordid | cdi_proquest_miscellaneous_3128813584 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Cryogenic temperature Curie temperature Electrons Epitaxial growth Ferroelectric materials Ferroelectricity ferroelectrics Melting points Molecular beam epitaxy Optical properties phase‐field modeling Polarization Potassium niobates Quantum computing Second harmonic generation strain‐tuning Temperature dependence Thin films Tuning |
title | Colossal Strain Tuning of Ferroelectric Transitions in KNbO3 Thin Films |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T07%3A02%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Colossal%20Strain%20Tuning%20of%20Ferroelectric%20Transitions%20in%20KNbO3%20Thin%20Films&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Hazra,%20Sankalpa&rft.date=2024-12-01&rft.volume=36&rft.issue=52&rft.spage=e2408664&rft.epage=n/a&rft.pages=e2408664-n/a&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.202408664&rft_dat=%3Cproquest_pubme%3E3128813584%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3149651496&rft_id=info:pmid/39533481&rfr_iscdi=true |