DNA damage response inhibitors in cancer therapy: lessons from the past, current status and future implications

The DNA damage response (DDR) is a network of proteins that coordinate DNA repair and cell-cycle checkpoints to prevent damage being transmitted to daughter cells. DDR defects lead to genomic instability, which enables tumour development, but they also create vulnerabilities that can be used for can...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature reviews. Drug discovery 2024-11, Vol.24 (1), p.19-39
Hauptverfasser: Drew, Yvette, Zenke, Frank T, Curtin, Nicola J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The DNA damage response (DDR) is a network of proteins that coordinate DNA repair and cell-cycle checkpoints to prevent damage being transmitted to daughter cells. DDR defects lead to genomic instability, which enables tumour development, but they also create vulnerabilities that can be used for cancer therapy. Historically, this vulnerability has been taken advantage of using DNA-damaging cytotoxic drugs and radiotherapy, which are more toxic to tumour cells than to normal tissues. However, the discovery of the unique sensitivity of tumours defective in the homologous recombination DNA repair pathway to PARP inhibition led to the approval of six PARP inhibitors worldwide and to a focus on making use of DDR defects through the development of other DDR-targeting drugs. Here, we analyse the lessons learnt from PARP inhibitor development and how these may be applied to new targets to maximize success. We explore why, despite so much research, no other DDR inhibitor class has been approved, and only a handful have advanced to later-stage clinical trials. We discuss why more reliable predictive biomarkers are needed, explore study design from past and current trials, and suggest alternative models for monotherapy and combination studies. Targeting multiple DDR pathways simultaneously and potential combinations with anti-angiogenic agents or immune checkpoint inhibitors are also discussed. Defects in the DNA damage response have been utilized therapeutically for cancer for a decade. This Review analyses the lessons learnt from the development of PARP inhibitors and how these may be applied to new targets to maximize success. Targeting multiple DNA damage response pathways simultaneously and combinations with other therapies are also discussed.
ISSN:1474-1776
1474-1784
1474-1784
DOI:10.1038/s41573-024-01060-w