Ultra‐High Activity and Durability of Low‐Platinum Fuel Cells Enabled by Encapsulation of L10‐PtCo and L12‐Pt3Co Intermetallic Compounds
Developing high‐performance, durable, and ultralow‐loading platinum (Pt) catalysts for the oxygen reduction reaction (ORR) is crucial for advancing fuel cells. Here, a novel structured alloy catalyst is reported, characterized by Pt‐Co intermetallic compounds with a Pt‐skin, encapsulated by a covale...
Gespeichert in:
Veröffentlicht in: | Small (Weinheim an der Bergstrasse, Germany) Germany), 2024-11, Vol.21 (1), p.e2407163-n/a |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 1 |
container_start_page | e2407163 |
container_title | Small (Weinheim an der Bergstrasse, Germany) |
container_volume | 21 |
creator | Li, Gong Bai, Jingsen Liu, Changpeng Jin, Zhao Xiao, Meiling Xing, Wei |
description | Developing high‐performance, durable, and ultralow‐loading platinum (Pt) catalysts for the oxygen reduction reaction (ORR) is crucial for advancing fuel cells. Here, a novel structured alloy catalyst is reported, characterized by Pt‐Co intermetallic compounds with a Pt‐skin, encapsulated by a covalent organic framework (COF) derived carbon support. This unique structure, combining alloy‐induced strain effects and protective encapsulation, leads to exceptional catalytic activity and stability at an ultralow Pt loading of 0.02 mgPt cm−2. To be specific, this catalyst exhibits peak power densities of 1.77 W cm−2 in fuel cell tests. It demonstrates a state‐of‐the‐art mass activity of 2.15 A mgPt−1 (@0.9 V), which is 5.38 times that of commercial Pt/C (0.40 A mgPt−1). More importantly, the fuel cell assembled with this novel catalyst displays exceptional durability, with a voltage degradation of only 9.9 mV after 100,000 cycles at 0.8 A cm−2 and a mass activity retention of 85% (1.83 A mgPt−1), far exceeding the 2025 initial mass activity (MA) target (0.44 A mgPt−1) of DOE by 4.2 times. Notably, the current density at 0.6 V under hydrogen‐air conditions shows only a slight decline after more than 230 h.
In this study, the electron transfer between PtCo alloys via carbon support is modulated, resulting in an alloy structure where L10‐PtCo and L12‐Pt3Co intermetallic compounds coexist. This approach achieves ultra‐low Pt loading within the fuel cell, while simultaneously attaining exceptionally high activity and stability. |
doi_str_mv | 10.1002/smll.202407163 |
format | Article |
fullrecord | <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_miscellaneous_3128749000</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3152458054</sourcerecordid><originalsourceid>FETCH-LOGICAL-p2363-515c261f8cfad708b6ced3b94129d6003408a612417a454c67928b53764b6f7d3</originalsourceid><addsrcrecordid>eNpdkb1OwzAUhS0EEqWwMltiYUnxX5xkrEKhlYJAgs6RkzjgyolDnFBl4xH6jDwJTos6MPke6btHPvcAcI3RDCNE7myl9YwgwlCAOT0BE8wx9XhIotPjjNE5uLB2gxDFhAUTsFvrrhU_37ulev-A87xTX6oboKgLeN-3IlN6lKaEidk66kWLTtV9BR96qWEstbZwUYtMywJmgxtz0dh-hEy938Jo3Opis7dMMNlL6vSq7mRbyU5orXIYm6oxfV3YS3BWCm3l1d87BeuHxVu89JLnx1U8T7yGUE49H_s54bgM81IUAQoznsuCZhHDJCq4i8dQKLjLiAPBfJbzICJh5tOAs4yXQUGn4Pbg27Tms5e2SytlcxdI1NL0NnX3CQMWIWc1BTf_0I3p29r9zlE-YX6IfOao6EBtlZZD2rSqEu2QYpSO7aRjO-mxnfT1KUmOiv4CJ_OIeg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3152458054</pqid></control><display><type>article</type><title>Ultra‐High Activity and Durability of Low‐Platinum Fuel Cells Enabled by Encapsulation of L10‐PtCo and L12‐Pt3Co Intermetallic Compounds</title><source>Wiley Online Library All Journals</source><creator>Li, Gong ; Bai, Jingsen ; Liu, Changpeng ; Jin, Zhao ; Xiao, Meiling ; Xing, Wei</creator><creatorcontrib>Li, Gong ; Bai, Jingsen ; Liu, Changpeng ; Jin, Zhao ; Xiao, Meiling ; Xing, Wei</creatorcontrib><description>Developing high‐performance, durable, and ultralow‐loading platinum (Pt) catalysts for the oxygen reduction reaction (ORR) is crucial for advancing fuel cells. Here, a novel structured alloy catalyst is reported, characterized by Pt‐Co intermetallic compounds with a Pt‐skin, encapsulated by a covalent organic framework (COF) derived carbon support. This unique structure, combining alloy‐induced strain effects and protective encapsulation, leads to exceptional catalytic activity and stability at an ultralow Pt loading of 0.02 mgPt cm−2. To be specific, this catalyst exhibits peak power densities of 1.77 W cm−2 in fuel cell tests. It demonstrates a state‐of‐the‐art mass activity of 2.15 A mgPt−1 (@0.9 V), which is 5.38 times that of commercial Pt/C (0.40 A mgPt−1). More importantly, the fuel cell assembled with this novel catalyst displays exceptional durability, with a voltage degradation of only 9.9 mV after 100,000 cycles at 0.8 A cm−2 and a mass activity retention of 85% (1.83 A mgPt−1), far exceeding the 2025 initial mass activity (MA) target (0.44 A mgPt−1) of DOE by 4.2 times. Notably, the current density at 0.6 V under hydrogen‐air conditions shows only a slight decline after more than 230 h.
In this study, the electron transfer between PtCo alloys via carbon support is modulated, resulting in an alloy structure where L10‐PtCo and L12‐Pt3Co intermetallic compounds coexist. This approach achieves ultra‐low Pt loading within the fuel cell, while simultaneously attaining exceptionally high activity and stability.</description><identifier>ISSN: 1613-6810</identifier><identifier>ISSN: 1613-6829</identifier><identifier>EISSN: 1613-6829</identifier><identifier>DOI: 10.1002/smll.202407163</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Catalysts ; Catalytic activity ; Chemical reduction ; covalent organic framework ; Durability ; Encapsulation ; encapsulation structure ; fuel cell ; Fuel cells ; Intermetallic compounds ; ordered intermetallic ; oxygen reduction reaction ; Oxygen reduction reactions ; Platinum ; Protective structures</subject><ispartof>Small (Weinheim an der Bergstrasse, Germany), 2024-11, Vol.21 (1), p.e2407163-n/a</ispartof><rights>2024 Wiley‐VCH GmbH</rights><rights>2025 Wiley‐VCH GmbH</rights><rights>2024 Wiley‐VCH GmbH.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-2841-7206</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fsmll.202407163$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fsmll.202407163$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,27923,27924,45573,45574</link.rule.ids></links><search><creatorcontrib>Li, Gong</creatorcontrib><creatorcontrib>Bai, Jingsen</creatorcontrib><creatorcontrib>Liu, Changpeng</creatorcontrib><creatorcontrib>Jin, Zhao</creatorcontrib><creatorcontrib>Xiao, Meiling</creatorcontrib><creatorcontrib>Xing, Wei</creatorcontrib><title>Ultra‐High Activity and Durability of Low‐Platinum Fuel Cells Enabled by Encapsulation of L10‐PtCo and L12‐Pt3Co Intermetallic Compounds</title><title>Small (Weinheim an der Bergstrasse, Germany)</title><description>Developing high‐performance, durable, and ultralow‐loading platinum (Pt) catalysts for the oxygen reduction reaction (ORR) is crucial for advancing fuel cells. Here, a novel structured alloy catalyst is reported, characterized by Pt‐Co intermetallic compounds with a Pt‐skin, encapsulated by a covalent organic framework (COF) derived carbon support. This unique structure, combining alloy‐induced strain effects and protective encapsulation, leads to exceptional catalytic activity and stability at an ultralow Pt loading of 0.02 mgPt cm−2. To be specific, this catalyst exhibits peak power densities of 1.77 W cm−2 in fuel cell tests. It demonstrates a state‐of‐the‐art mass activity of 2.15 A mgPt−1 (@0.9 V), which is 5.38 times that of commercial Pt/C (0.40 A mgPt−1). More importantly, the fuel cell assembled with this novel catalyst displays exceptional durability, with a voltage degradation of only 9.9 mV after 100,000 cycles at 0.8 A cm−2 and a mass activity retention of 85% (1.83 A mgPt−1), far exceeding the 2025 initial mass activity (MA) target (0.44 A mgPt−1) of DOE by 4.2 times. Notably, the current density at 0.6 V under hydrogen‐air conditions shows only a slight decline after more than 230 h.
In this study, the electron transfer between PtCo alloys via carbon support is modulated, resulting in an alloy structure where L10‐PtCo and L12‐Pt3Co intermetallic compounds coexist. This approach achieves ultra‐low Pt loading within the fuel cell, while simultaneously attaining exceptionally high activity and stability.</description><subject>Catalysts</subject><subject>Catalytic activity</subject><subject>Chemical reduction</subject><subject>covalent organic framework</subject><subject>Durability</subject><subject>Encapsulation</subject><subject>encapsulation structure</subject><subject>fuel cell</subject><subject>Fuel cells</subject><subject>Intermetallic compounds</subject><subject>ordered intermetallic</subject><subject>oxygen reduction reaction</subject><subject>Oxygen reduction reactions</subject><subject>Platinum</subject><subject>Protective structures</subject><issn>1613-6810</issn><issn>1613-6829</issn><issn>1613-6829</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpdkb1OwzAUhS0EEqWwMltiYUnxX5xkrEKhlYJAgs6RkzjgyolDnFBl4xH6jDwJTos6MPke6btHPvcAcI3RDCNE7myl9YwgwlCAOT0BE8wx9XhIotPjjNE5uLB2gxDFhAUTsFvrrhU_37ulev-A87xTX6oboKgLeN-3IlN6lKaEidk66kWLTtV9BR96qWEstbZwUYtMywJmgxtz0dh-hEy938Jo3Opis7dMMNlL6vSq7mRbyU5orXIYm6oxfV3YS3BWCm3l1d87BeuHxVu89JLnx1U8T7yGUE49H_s54bgM81IUAQoznsuCZhHDJCq4i8dQKLjLiAPBfJbzICJh5tOAs4yXQUGn4Pbg27Tms5e2SytlcxdI1NL0NnX3CQMWIWc1BTf_0I3p29r9zlE-YX6IfOao6EBtlZZD2rSqEu2QYpSO7aRjO-mxnfT1KUmOiv4CJ_OIeg</recordid><startdate>20241110</startdate><enddate>20241110</enddate><creator>Li, Gong</creator><creator>Bai, Jingsen</creator><creator>Liu, Changpeng</creator><creator>Jin, Zhao</creator><creator>Xiao, Meiling</creator><creator>Xing, Wei</creator><general>Wiley Subscription Services, Inc</general><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-2841-7206</orcidid></search><sort><creationdate>20241110</creationdate><title>Ultra‐High Activity and Durability of Low‐Platinum Fuel Cells Enabled by Encapsulation of L10‐PtCo and L12‐Pt3Co Intermetallic Compounds</title><author>Li, Gong ; Bai, Jingsen ; Liu, Changpeng ; Jin, Zhao ; Xiao, Meiling ; Xing, Wei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p2363-515c261f8cfad708b6ced3b94129d6003408a612417a454c67928b53764b6f7d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Catalysts</topic><topic>Catalytic activity</topic><topic>Chemical reduction</topic><topic>covalent organic framework</topic><topic>Durability</topic><topic>Encapsulation</topic><topic>encapsulation structure</topic><topic>fuel cell</topic><topic>Fuel cells</topic><topic>Intermetallic compounds</topic><topic>ordered intermetallic</topic><topic>oxygen reduction reaction</topic><topic>Oxygen reduction reactions</topic><topic>Platinum</topic><topic>Protective structures</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Gong</creatorcontrib><creatorcontrib>Bai, Jingsen</creatorcontrib><creatorcontrib>Liu, Changpeng</creatorcontrib><creatorcontrib>Jin, Zhao</creatorcontrib><creatorcontrib>Xiao, Meiling</creatorcontrib><creatorcontrib>Xing, Wei</creatorcontrib><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Gong</au><au>Bai, Jingsen</au><au>Liu, Changpeng</au><au>Jin, Zhao</au><au>Xiao, Meiling</au><au>Xing, Wei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ultra‐High Activity and Durability of Low‐Platinum Fuel Cells Enabled by Encapsulation of L10‐PtCo and L12‐Pt3Co Intermetallic Compounds</atitle><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle><date>2024-11-10</date><risdate>2024</risdate><volume>21</volume><issue>1</issue><spage>e2407163</spage><epage>n/a</epage><pages>e2407163-n/a</pages><issn>1613-6810</issn><issn>1613-6829</issn><eissn>1613-6829</eissn><abstract>Developing high‐performance, durable, and ultralow‐loading platinum (Pt) catalysts for the oxygen reduction reaction (ORR) is crucial for advancing fuel cells. Here, a novel structured alloy catalyst is reported, characterized by Pt‐Co intermetallic compounds with a Pt‐skin, encapsulated by a covalent organic framework (COF) derived carbon support. This unique structure, combining alloy‐induced strain effects and protective encapsulation, leads to exceptional catalytic activity and stability at an ultralow Pt loading of 0.02 mgPt cm−2. To be specific, this catalyst exhibits peak power densities of 1.77 W cm−2 in fuel cell tests. It demonstrates a state‐of‐the‐art mass activity of 2.15 A mgPt−1 (@0.9 V), which is 5.38 times that of commercial Pt/C (0.40 A mgPt−1). More importantly, the fuel cell assembled with this novel catalyst displays exceptional durability, with a voltage degradation of only 9.9 mV after 100,000 cycles at 0.8 A cm−2 and a mass activity retention of 85% (1.83 A mgPt−1), far exceeding the 2025 initial mass activity (MA) target (0.44 A mgPt−1) of DOE by 4.2 times. Notably, the current density at 0.6 V under hydrogen‐air conditions shows only a slight decline after more than 230 h.
In this study, the electron transfer between PtCo alloys via carbon support is modulated, resulting in an alloy structure where L10‐PtCo and L12‐Pt3Co intermetallic compounds coexist. This approach achieves ultra‐low Pt loading within the fuel cell, while simultaneously attaining exceptionally high activity and stability.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/smll.202407163</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-2841-7206</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1613-6810 |
ispartof | Small (Weinheim an der Bergstrasse, Germany), 2024-11, Vol.21 (1), p.e2407163-n/a |
issn | 1613-6810 1613-6829 1613-6829 |
language | eng |
recordid | cdi_proquest_miscellaneous_3128749000 |
source | Wiley Online Library All Journals |
subjects | Catalysts Catalytic activity Chemical reduction covalent organic framework Durability Encapsulation encapsulation structure fuel cell Fuel cells Intermetallic compounds ordered intermetallic oxygen reduction reaction Oxygen reduction reactions Platinum Protective structures |
title | Ultra‐High Activity and Durability of Low‐Platinum Fuel Cells Enabled by Encapsulation of L10‐PtCo and L12‐Pt3Co Intermetallic Compounds |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T10%3A48%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ultra%E2%80%90High%20Activity%20and%20Durability%20of%20Low%E2%80%90Platinum%20Fuel%20Cells%20Enabled%20by%20Encapsulation%20of%20L10%E2%80%90PtCo%20and%20L12%E2%80%90Pt3Co%20Intermetallic%20Compounds&rft.jtitle=Small%20(Weinheim%20an%20der%20Bergstrasse,%20Germany)&rft.au=Li,%20Gong&rft.date=2024-11-10&rft.volume=21&rft.issue=1&rft.spage=e2407163&rft.epage=n/a&rft.pages=e2407163-n/a&rft.issn=1613-6810&rft.eissn=1613-6829&rft_id=info:doi/10.1002/smll.202407163&rft_dat=%3Cproquest_wiley%3E3152458054%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3152458054&rft_id=info:pmid/&rfr_iscdi=true |