Ultra‐High Activity and Durability of Low‐Platinum Fuel Cells Enabled by Encapsulation of L10‐PtCo and L12‐Pt3Co Intermetallic Compounds

Developing high‐performance, durable, and ultralow‐loading platinum (Pt) catalysts for the oxygen reduction reaction (ORR) is crucial for advancing fuel cells. Here, a novel structured alloy catalyst is reported, characterized by Pt‐Co intermetallic compounds with a Pt‐skin, encapsulated by a covale...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Small (Weinheim an der Bergstrasse, Germany) Germany), 2024-11, Vol.21 (1), p.e2407163-n/a
Hauptverfasser: Li, Gong, Bai, Jingsen, Liu, Changpeng, Jin, Zhao, Xiao, Meiling, Xing, Wei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 1
container_start_page e2407163
container_title Small (Weinheim an der Bergstrasse, Germany)
container_volume 21
creator Li, Gong
Bai, Jingsen
Liu, Changpeng
Jin, Zhao
Xiao, Meiling
Xing, Wei
description Developing high‐performance, durable, and ultralow‐loading platinum (Pt) catalysts for the oxygen reduction reaction (ORR) is crucial for advancing fuel cells. Here, a novel structured alloy catalyst is reported, characterized by Pt‐Co intermetallic compounds with a Pt‐skin, encapsulated by a covalent organic framework (COF) derived carbon support. This unique structure, combining alloy‐induced strain effects and protective encapsulation, leads to exceptional catalytic activity and stability at an ultralow Pt loading of 0.02 mgPt cm−2. To be specific, this catalyst exhibits peak power densities of 1.77 W cm−2 in fuel cell tests. It demonstrates a state‐of‐the‐art mass activity of 2.15 A mgPt−1 (@0.9 V), which is 5.38 times that of commercial Pt/C (0.40 A mgPt−1). More importantly, the fuel cell assembled with this novel catalyst displays exceptional durability, with a voltage degradation of only 9.9 mV after 100,000 cycles at 0.8 A cm−2 and a mass activity retention of 85% (1.83 A mgPt−1), far exceeding the 2025 initial mass activity (MA) target (0.44 A mgPt−1) of DOE by 4.2 times. Notably, the current density at 0.6 V under hydrogen‐air conditions shows only a slight decline after more than 230 h. In this study, the electron transfer between PtCo alloys via carbon support is modulated, resulting in an alloy structure where L10‐PtCo and L12‐Pt3Co intermetallic compounds coexist. This approach achieves ultra‐low Pt loading within the fuel cell, while simultaneously attaining exceptionally high activity and stability.
doi_str_mv 10.1002/smll.202407163
format Article
fullrecord <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_miscellaneous_3128749000</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3152458054</sourcerecordid><originalsourceid>FETCH-LOGICAL-p2363-515c261f8cfad708b6ced3b94129d6003408a612417a454c67928b53764b6f7d3</originalsourceid><addsrcrecordid>eNpdkb1OwzAUhS0EEqWwMltiYUnxX5xkrEKhlYJAgs6RkzjgyolDnFBl4xH6jDwJTos6MPke6btHPvcAcI3RDCNE7myl9YwgwlCAOT0BE8wx9XhIotPjjNE5uLB2gxDFhAUTsFvrrhU_37ulev-A87xTX6oboKgLeN-3IlN6lKaEidk66kWLTtV9BR96qWEstbZwUYtMywJmgxtz0dh-hEy938Jo3Opis7dMMNlL6vSq7mRbyU5orXIYm6oxfV3YS3BWCm3l1d87BeuHxVu89JLnx1U8T7yGUE49H_s54bgM81IUAQoznsuCZhHDJCq4i8dQKLjLiAPBfJbzICJh5tOAs4yXQUGn4Pbg27Tms5e2SytlcxdI1NL0NnX3CQMWIWc1BTf_0I3p29r9zlE-YX6IfOao6EBtlZZD2rSqEu2QYpSO7aRjO-mxnfT1KUmOiv4CJ_OIeg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3152458054</pqid></control><display><type>article</type><title>Ultra‐High Activity and Durability of Low‐Platinum Fuel Cells Enabled by Encapsulation of L10‐PtCo and L12‐Pt3Co Intermetallic Compounds</title><source>Wiley Online Library All Journals</source><creator>Li, Gong ; Bai, Jingsen ; Liu, Changpeng ; Jin, Zhao ; Xiao, Meiling ; Xing, Wei</creator><creatorcontrib>Li, Gong ; Bai, Jingsen ; Liu, Changpeng ; Jin, Zhao ; Xiao, Meiling ; Xing, Wei</creatorcontrib><description>Developing high‐performance, durable, and ultralow‐loading platinum (Pt) catalysts for the oxygen reduction reaction (ORR) is crucial for advancing fuel cells. Here, a novel structured alloy catalyst is reported, characterized by Pt‐Co intermetallic compounds with a Pt‐skin, encapsulated by a covalent organic framework (COF) derived carbon support. This unique structure, combining alloy‐induced strain effects and protective encapsulation, leads to exceptional catalytic activity and stability at an ultralow Pt loading of 0.02 mgPt cm−2. To be specific, this catalyst exhibits peak power densities of 1.77 W cm−2 in fuel cell tests. It demonstrates a state‐of‐the‐art mass activity of 2.15 A mgPt−1 (@0.9 V), which is 5.38 times that of commercial Pt/C (0.40 A mgPt−1). More importantly, the fuel cell assembled with this novel catalyst displays exceptional durability, with a voltage degradation of only 9.9 mV after 100,000 cycles at 0.8 A cm−2 and a mass activity retention of 85% (1.83 A mgPt−1), far exceeding the 2025 initial mass activity (MA) target (0.44 A mgPt−1) of DOE by 4.2 times. Notably, the current density at 0.6 V under hydrogen‐air conditions shows only a slight decline after more than 230 h. In this study, the electron transfer between PtCo alloys via carbon support is modulated, resulting in an alloy structure where L10‐PtCo and L12‐Pt3Co intermetallic compounds coexist. This approach achieves ultra‐low Pt loading within the fuel cell, while simultaneously attaining exceptionally high activity and stability.</description><identifier>ISSN: 1613-6810</identifier><identifier>ISSN: 1613-6829</identifier><identifier>EISSN: 1613-6829</identifier><identifier>DOI: 10.1002/smll.202407163</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Catalysts ; Catalytic activity ; Chemical reduction ; covalent organic framework ; Durability ; Encapsulation ; encapsulation structure ; fuel cell ; Fuel cells ; Intermetallic compounds ; ordered intermetallic ; oxygen reduction reaction ; Oxygen reduction reactions ; Platinum ; Protective structures</subject><ispartof>Small (Weinheim an der Bergstrasse, Germany), 2024-11, Vol.21 (1), p.e2407163-n/a</ispartof><rights>2024 Wiley‐VCH GmbH</rights><rights>2025 Wiley‐VCH GmbH</rights><rights>2024 Wiley‐VCH GmbH.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-2841-7206</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fsmll.202407163$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fsmll.202407163$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,27923,27924,45573,45574</link.rule.ids></links><search><creatorcontrib>Li, Gong</creatorcontrib><creatorcontrib>Bai, Jingsen</creatorcontrib><creatorcontrib>Liu, Changpeng</creatorcontrib><creatorcontrib>Jin, Zhao</creatorcontrib><creatorcontrib>Xiao, Meiling</creatorcontrib><creatorcontrib>Xing, Wei</creatorcontrib><title>Ultra‐High Activity and Durability of Low‐Platinum Fuel Cells Enabled by Encapsulation of L10‐PtCo and L12‐Pt3Co Intermetallic Compounds</title><title>Small (Weinheim an der Bergstrasse, Germany)</title><description>Developing high‐performance, durable, and ultralow‐loading platinum (Pt) catalysts for the oxygen reduction reaction (ORR) is crucial for advancing fuel cells. Here, a novel structured alloy catalyst is reported, characterized by Pt‐Co intermetallic compounds with a Pt‐skin, encapsulated by a covalent organic framework (COF) derived carbon support. This unique structure, combining alloy‐induced strain effects and protective encapsulation, leads to exceptional catalytic activity and stability at an ultralow Pt loading of 0.02 mgPt cm−2. To be specific, this catalyst exhibits peak power densities of 1.77 W cm−2 in fuel cell tests. It demonstrates a state‐of‐the‐art mass activity of 2.15 A mgPt−1 (@0.9 V), which is 5.38 times that of commercial Pt/C (0.40 A mgPt−1). More importantly, the fuel cell assembled with this novel catalyst displays exceptional durability, with a voltage degradation of only 9.9 mV after 100,000 cycles at 0.8 A cm−2 and a mass activity retention of 85% (1.83 A mgPt−1), far exceeding the 2025 initial mass activity (MA) target (0.44 A mgPt−1) of DOE by 4.2 times. Notably, the current density at 0.6 V under hydrogen‐air conditions shows only a slight decline after more than 230 h. In this study, the electron transfer between PtCo alloys via carbon support is modulated, resulting in an alloy structure where L10‐PtCo and L12‐Pt3Co intermetallic compounds coexist. This approach achieves ultra‐low Pt loading within the fuel cell, while simultaneously attaining exceptionally high activity and stability.</description><subject>Catalysts</subject><subject>Catalytic activity</subject><subject>Chemical reduction</subject><subject>covalent organic framework</subject><subject>Durability</subject><subject>Encapsulation</subject><subject>encapsulation structure</subject><subject>fuel cell</subject><subject>Fuel cells</subject><subject>Intermetallic compounds</subject><subject>ordered intermetallic</subject><subject>oxygen reduction reaction</subject><subject>Oxygen reduction reactions</subject><subject>Platinum</subject><subject>Protective structures</subject><issn>1613-6810</issn><issn>1613-6829</issn><issn>1613-6829</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpdkb1OwzAUhS0EEqWwMltiYUnxX5xkrEKhlYJAgs6RkzjgyolDnFBl4xH6jDwJTos6MPke6btHPvcAcI3RDCNE7myl9YwgwlCAOT0BE8wx9XhIotPjjNE5uLB2gxDFhAUTsFvrrhU_37ulev-A87xTX6oboKgLeN-3IlN6lKaEidk66kWLTtV9BR96qWEstbZwUYtMywJmgxtz0dh-hEy938Jo3Opis7dMMNlL6vSq7mRbyU5orXIYm6oxfV3YS3BWCm3l1d87BeuHxVu89JLnx1U8T7yGUE49H_s54bgM81IUAQoznsuCZhHDJCq4i8dQKLjLiAPBfJbzICJh5tOAs4yXQUGn4Pbg27Tms5e2SytlcxdI1NL0NnX3CQMWIWc1BTf_0I3p29r9zlE-YX6IfOao6EBtlZZD2rSqEu2QYpSO7aRjO-mxnfT1KUmOiv4CJ_OIeg</recordid><startdate>20241110</startdate><enddate>20241110</enddate><creator>Li, Gong</creator><creator>Bai, Jingsen</creator><creator>Liu, Changpeng</creator><creator>Jin, Zhao</creator><creator>Xiao, Meiling</creator><creator>Xing, Wei</creator><general>Wiley Subscription Services, Inc</general><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-2841-7206</orcidid></search><sort><creationdate>20241110</creationdate><title>Ultra‐High Activity and Durability of Low‐Platinum Fuel Cells Enabled by Encapsulation of L10‐PtCo and L12‐Pt3Co Intermetallic Compounds</title><author>Li, Gong ; Bai, Jingsen ; Liu, Changpeng ; Jin, Zhao ; Xiao, Meiling ; Xing, Wei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p2363-515c261f8cfad708b6ced3b94129d6003408a612417a454c67928b53764b6f7d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Catalysts</topic><topic>Catalytic activity</topic><topic>Chemical reduction</topic><topic>covalent organic framework</topic><topic>Durability</topic><topic>Encapsulation</topic><topic>encapsulation structure</topic><topic>fuel cell</topic><topic>Fuel cells</topic><topic>Intermetallic compounds</topic><topic>ordered intermetallic</topic><topic>oxygen reduction reaction</topic><topic>Oxygen reduction reactions</topic><topic>Platinum</topic><topic>Protective structures</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Gong</creatorcontrib><creatorcontrib>Bai, Jingsen</creatorcontrib><creatorcontrib>Liu, Changpeng</creatorcontrib><creatorcontrib>Jin, Zhao</creatorcontrib><creatorcontrib>Xiao, Meiling</creatorcontrib><creatorcontrib>Xing, Wei</creatorcontrib><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Gong</au><au>Bai, Jingsen</au><au>Liu, Changpeng</au><au>Jin, Zhao</au><au>Xiao, Meiling</au><au>Xing, Wei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ultra‐High Activity and Durability of Low‐Platinum Fuel Cells Enabled by Encapsulation of L10‐PtCo and L12‐Pt3Co Intermetallic Compounds</atitle><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle><date>2024-11-10</date><risdate>2024</risdate><volume>21</volume><issue>1</issue><spage>e2407163</spage><epage>n/a</epage><pages>e2407163-n/a</pages><issn>1613-6810</issn><issn>1613-6829</issn><eissn>1613-6829</eissn><abstract>Developing high‐performance, durable, and ultralow‐loading platinum (Pt) catalysts for the oxygen reduction reaction (ORR) is crucial for advancing fuel cells. Here, a novel structured alloy catalyst is reported, characterized by Pt‐Co intermetallic compounds with a Pt‐skin, encapsulated by a covalent organic framework (COF) derived carbon support. This unique structure, combining alloy‐induced strain effects and protective encapsulation, leads to exceptional catalytic activity and stability at an ultralow Pt loading of 0.02 mgPt cm−2. To be specific, this catalyst exhibits peak power densities of 1.77 W cm−2 in fuel cell tests. It demonstrates a state‐of‐the‐art mass activity of 2.15 A mgPt−1 (@0.9 V), which is 5.38 times that of commercial Pt/C (0.40 A mgPt−1). More importantly, the fuel cell assembled with this novel catalyst displays exceptional durability, with a voltage degradation of only 9.9 mV after 100,000 cycles at 0.8 A cm−2 and a mass activity retention of 85% (1.83 A mgPt−1), far exceeding the 2025 initial mass activity (MA) target (0.44 A mgPt−1) of DOE by 4.2 times. Notably, the current density at 0.6 V under hydrogen‐air conditions shows only a slight decline after more than 230 h. In this study, the electron transfer between PtCo alloys via carbon support is modulated, resulting in an alloy structure where L10‐PtCo and L12‐Pt3Co intermetallic compounds coexist. This approach achieves ultra‐low Pt loading within the fuel cell, while simultaneously attaining exceptionally high activity and stability.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/smll.202407163</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-2841-7206</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1613-6810
ispartof Small (Weinheim an der Bergstrasse, Germany), 2024-11, Vol.21 (1), p.e2407163-n/a
issn 1613-6810
1613-6829
1613-6829
language eng
recordid cdi_proquest_miscellaneous_3128749000
source Wiley Online Library All Journals
subjects Catalysts
Catalytic activity
Chemical reduction
covalent organic framework
Durability
Encapsulation
encapsulation structure
fuel cell
Fuel cells
Intermetallic compounds
ordered intermetallic
oxygen reduction reaction
Oxygen reduction reactions
Platinum
Protective structures
title Ultra‐High Activity and Durability of Low‐Platinum Fuel Cells Enabled by Encapsulation of L10‐PtCo and L12‐Pt3Co Intermetallic Compounds
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T10%3A48%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ultra%E2%80%90High%20Activity%20and%20Durability%20of%20Low%E2%80%90Platinum%20Fuel%20Cells%20Enabled%20by%20Encapsulation%20of%20L10%E2%80%90PtCo%20and%20L12%E2%80%90Pt3Co%20Intermetallic%20Compounds&rft.jtitle=Small%20(Weinheim%20an%20der%20Bergstrasse,%20Germany)&rft.au=Li,%20Gong&rft.date=2024-11-10&rft.volume=21&rft.issue=1&rft.spage=e2407163&rft.epage=n/a&rft.pages=e2407163-n/a&rft.issn=1613-6810&rft.eissn=1613-6829&rft_id=info:doi/10.1002/smll.202407163&rft_dat=%3Cproquest_wiley%3E3152458054%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3152458054&rft_id=info:pmid/&rfr_iscdi=true