Visible light-induced simultaneous bioactive amorphous calcium phosphate mineralization and in situ crosslinking of coacervate-based injectable underwater adhesive hydrogels for enhanced bone regeneration
The field of bone tissue engineering is vital due to increasing bone disorders and limitations of traditional grafts. Injectable hydrogels offer minimally invasive solutions but often lack mechanical integrity and biological functionality, including osteoinductive capacity and structural stability u...
Gespeichert in:
Veröffentlicht in: | Biomaterials 2025-04, Vol.315, p.122948, Article 122948 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 122948 |
container_title | Biomaterials |
container_volume | 315 |
creator | Yun, Jinyoung Woo, Hyun Tack Lee, Sangmin Cha, Hyung Joon |
description | The field of bone tissue engineering is vital due to increasing bone disorders and limitations of traditional grafts. Injectable hydrogels offer minimally invasive solutions but often lack mechanical integrity and biological functionality, including osteoinductive capacity and structural stability under physiological conditions. To address these issues, we propose a coacervate-based injectable adhesive hydrogel that utilizes the dual functionality of in situ photocrosslinking and osteoinductive amorphous calcium phosphate formation, both of which are activated simultaneously by visible light irradiation. The developed hydrogel formulation integrated a photoreactive agent with calcium ions and phosphonodiol in a matrix of tyramine-conjugated alginate and RGD peptide-fused bioengineered mussel adhesive protein, promoting rapid setting, robust underwater adhesion, and bioactive mineral deposition. The hydrogel also exhibited superior mechanical properties, including enhanced underwater tissue adhesive strength and compressive resistance. In vivo evaluation using a rat femoral tunnel defect model confirmed the efficacy of the developed adhesive hydrogel in facilitating easy application to irregularly shaped defects through injection, rapid bone regeneration without the addition of bone grafts, and integration within the defect sites. This injectable adhesive hydrogel system holds significant potential for advancing bone tissue engineering, providing a versatile, efficient, and biologically favorable alternative to conventional bone repair methodologies. |
doi_str_mv | 10.1016/j.biomaterials.2024.122948 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3128746649</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0142961224004836</els_id><sourcerecordid>3154261245</sourcerecordid><originalsourceid>FETCH-LOGICAL-c286t-c73cb2bf1f1be91ba97a6cc73d15babbe9ed75c1d3dccc778c4730eaa01b2f013</originalsourceid><addsrcrecordid>eNqNUcuO1DAQjBCIHRZ-AVmcuGSwnTc3tMtLWokLcLX86Ex6cOzBTgYt38hHYZMFcdyT1aXqrnJVUbxgdM8oa18d9wr9LBcIKG3cc8rrPeN8qPsHxY71XV82A20eFjvKal4OLeMXxZMYjzTNtOaPi4tqaDivGr4rfn3FiMoCsXiYlhKdWTUYEnFe7SId-DWSpCb1gmcgcvbhNGVMS6txnUma4mlKXsiMDoK0-FMu6B2RzhB06dCyEh18jBbdN3QH4kei0z0I57RVKhkhE4-gF5l9rM5A-JE_R6SZIGbZ6dYEfwAbyegDATdJl00q74AEOEAWzqJPi0djSgSe3b2XxZd3bz9ffShvPr3_ePXmptS8b5dSd5VWXI1sZAoGpuTQyVYn1LBGSZUwMF2jmamMTnDX67qrKEhJmeIjZdVl8XK7ewr--wpxETNGDdZugYmKNTVPsdfNPai87-q2rYdEfb1R_8QVYBSngLMMt4JRkYsXR_F_8SIXL7bi0_LzO51VzWD-rf5tOhGuN0KKEc4IQUSNkHPEkLIXxuN9dH4DVMPOwg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3128746649</pqid></control><display><type>article</type><title>Visible light-induced simultaneous bioactive amorphous calcium phosphate mineralization and in situ crosslinking of coacervate-based injectable underwater adhesive hydrogels for enhanced bone regeneration</title><source>Elsevier ScienceDirect Journals Complete - AutoHoldings</source><source>MEDLINE</source><creator>Yun, Jinyoung ; Woo, Hyun Tack ; Lee, Sangmin ; Cha, Hyung Joon</creator><creatorcontrib>Yun, Jinyoung ; Woo, Hyun Tack ; Lee, Sangmin ; Cha, Hyung Joon</creatorcontrib><description>The field of bone tissue engineering is vital due to increasing bone disorders and limitations of traditional grafts. Injectable hydrogels offer minimally invasive solutions but often lack mechanical integrity and biological functionality, including osteoinductive capacity and structural stability under physiological conditions. To address these issues, we propose a coacervate-based injectable adhesive hydrogel that utilizes the dual functionality of in situ photocrosslinking and osteoinductive amorphous calcium phosphate formation, both of which are activated simultaneously by visible light irradiation. The developed hydrogel formulation integrated a photoreactive agent with calcium ions and phosphonodiol in a matrix of tyramine-conjugated alginate and RGD peptide-fused bioengineered mussel adhesive protein, promoting rapid setting, robust underwater adhesion, and bioactive mineral deposition. The hydrogel also exhibited superior mechanical properties, including enhanced underwater tissue adhesive strength and compressive resistance. In vivo evaluation using a rat femoral tunnel defect model confirmed the efficacy of the developed adhesive hydrogel in facilitating easy application to irregularly shaped defects through injection, rapid bone regeneration without the addition of bone grafts, and integration within the defect sites. This injectable adhesive hydrogel system holds significant potential for advancing bone tissue engineering, providing a versatile, efficient, and biologically favorable alternative to conventional bone repair methodologies.</description><identifier>ISSN: 0142-9612</identifier><identifier>ISSN: 1878-5905</identifier><identifier>EISSN: 1878-5905</identifier><identifier>DOI: 10.1016/j.biomaterials.2024.122948</identifier><identifier>PMID: 39522352</identifier><language>eng</language><publisher>Netherlands: Elsevier Ltd</publisher><subject>adhesion ; alginates ; Animals ; biocompatible materials ; Bone regeneration ; Bone Regeneration - drug effects ; bones ; Calcification, Physiologic - drug effects ; calcium ; calcium phosphates ; Calcium Phosphates - chemistry ; Coacervate-based adhesive hydrogel ; Cross-Linking Reagents - chemistry ; crosslinking ; hydrogels ; Hydrogels - chemistry ; Injectable bone graft ; Injections ; irradiation ; Light ; Male ; mineralization ; Mussel adhesive protein ; mussels ; Photomineralization ; Rats ; Rats, Sprague-Dawley ; Tissue Engineering - methods</subject><ispartof>Biomaterials, 2025-04, Vol.315, p.122948, Article 122948</ispartof><rights>2024 Elsevier Ltd</rights><rights>Copyright © 2024 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c286t-c73cb2bf1f1be91ba97a6cc73d15babbe9ed75c1d3dccc778c4730eaa01b2f013</cites><orcidid>0000-0003-4640-189X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.biomaterials.2024.122948$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,778,782,3539,27911,27912,45982</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39522352$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yun, Jinyoung</creatorcontrib><creatorcontrib>Woo, Hyun Tack</creatorcontrib><creatorcontrib>Lee, Sangmin</creatorcontrib><creatorcontrib>Cha, Hyung Joon</creatorcontrib><title>Visible light-induced simultaneous bioactive amorphous calcium phosphate mineralization and in situ crosslinking of coacervate-based injectable underwater adhesive hydrogels for enhanced bone regeneration</title><title>Biomaterials</title><addtitle>Biomaterials</addtitle><description>The field of bone tissue engineering is vital due to increasing bone disorders and limitations of traditional grafts. Injectable hydrogels offer minimally invasive solutions but often lack mechanical integrity and biological functionality, including osteoinductive capacity and structural stability under physiological conditions. To address these issues, we propose a coacervate-based injectable adhesive hydrogel that utilizes the dual functionality of in situ photocrosslinking and osteoinductive amorphous calcium phosphate formation, both of which are activated simultaneously by visible light irradiation. The developed hydrogel formulation integrated a photoreactive agent with calcium ions and phosphonodiol in a matrix of tyramine-conjugated alginate and RGD peptide-fused bioengineered mussel adhesive protein, promoting rapid setting, robust underwater adhesion, and bioactive mineral deposition. The hydrogel also exhibited superior mechanical properties, including enhanced underwater tissue adhesive strength and compressive resistance. In vivo evaluation using a rat femoral tunnel defect model confirmed the efficacy of the developed adhesive hydrogel in facilitating easy application to irregularly shaped defects through injection, rapid bone regeneration without the addition of bone grafts, and integration within the defect sites. This injectable adhesive hydrogel system holds significant potential for advancing bone tissue engineering, providing a versatile, efficient, and biologically favorable alternative to conventional bone repair methodologies.</description><subject>adhesion</subject><subject>alginates</subject><subject>Animals</subject><subject>biocompatible materials</subject><subject>Bone regeneration</subject><subject>Bone Regeneration - drug effects</subject><subject>bones</subject><subject>Calcification, Physiologic - drug effects</subject><subject>calcium</subject><subject>calcium phosphates</subject><subject>Calcium Phosphates - chemistry</subject><subject>Coacervate-based adhesive hydrogel</subject><subject>Cross-Linking Reagents - chemistry</subject><subject>crosslinking</subject><subject>hydrogels</subject><subject>Hydrogels - chemistry</subject><subject>Injectable bone graft</subject><subject>Injections</subject><subject>irradiation</subject><subject>Light</subject><subject>Male</subject><subject>mineralization</subject><subject>Mussel adhesive protein</subject><subject>mussels</subject><subject>Photomineralization</subject><subject>Rats</subject><subject>Rats, Sprague-Dawley</subject><subject>Tissue Engineering - methods</subject><issn>0142-9612</issn><issn>1878-5905</issn><issn>1878-5905</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNUcuO1DAQjBCIHRZ-AVmcuGSwnTc3tMtLWokLcLX86Ex6cOzBTgYt38hHYZMFcdyT1aXqrnJVUbxgdM8oa18d9wr9LBcIKG3cc8rrPeN8qPsHxY71XV82A20eFjvKal4OLeMXxZMYjzTNtOaPi4tqaDivGr4rfn3FiMoCsXiYlhKdWTUYEnFe7SId-DWSpCb1gmcgcvbhNGVMS6txnUma4mlKXsiMDoK0-FMu6B2RzhB06dCyEh18jBbdN3QH4kei0z0I57RVKhkhE4-gF5l9rM5A-JE_R6SZIGbZ6dYEfwAbyegDATdJl00q74AEOEAWzqJPi0djSgSe3b2XxZd3bz9ffShvPr3_ePXmptS8b5dSd5VWXI1sZAoGpuTQyVYn1LBGSZUwMF2jmamMTnDX67qrKEhJmeIjZdVl8XK7ewr--wpxETNGDdZugYmKNTVPsdfNPai87-q2rYdEfb1R_8QVYBSngLMMt4JRkYsXR_F_8SIXL7bi0_LzO51VzWD-rf5tOhGuN0KKEc4IQUSNkHPEkLIXxuN9dH4DVMPOwg</recordid><startdate>20250401</startdate><enddate>20250401</enddate><creator>Yun, Jinyoung</creator><creator>Woo, Hyun Tack</creator><creator>Lee, Sangmin</creator><creator>Cha, Hyung Joon</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><orcidid>https://orcid.org/0000-0003-4640-189X</orcidid></search><sort><creationdate>20250401</creationdate><title>Visible light-induced simultaneous bioactive amorphous calcium phosphate mineralization and in situ crosslinking of coacervate-based injectable underwater adhesive hydrogels for enhanced bone regeneration</title><author>Yun, Jinyoung ; Woo, Hyun Tack ; Lee, Sangmin ; Cha, Hyung Joon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c286t-c73cb2bf1f1be91ba97a6cc73d15babbe9ed75c1d3dccc778c4730eaa01b2f013</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>adhesion</topic><topic>alginates</topic><topic>Animals</topic><topic>biocompatible materials</topic><topic>Bone regeneration</topic><topic>Bone Regeneration - drug effects</topic><topic>bones</topic><topic>Calcification, Physiologic - drug effects</topic><topic>calcium</topic><topic>calcium phosphates</topic><topic>Calcium Phosphates - chemistry</topic><topic>Coacervate-based adhesive hydrogel</topic><topic>Cross-Linking Reagents - chemistry</topic><topic>crosslinking</topic><topic>hydrogels</topic><topic>Hydrogels - chemistry</topic><topic>Injectable bone graft</topic><topic>Injections</topic><topic>irradiation</topic><topic>Light</topic><topic>Male</topic><topic>mineralization</topic><topic>Mussel adhesive protein</topic><topic>mussels</topic><topic>Photomineralization</topic><topic>Rats</topic><topic>Rats, Sprague-Dawley</topic><topic>Tissue Engineering - methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yun, Jinyoung</creatorcontrib><creatorcontrib>Woo, Hyun Tack</creatorcontrib><creatorcontrib>Lee, Sangmin</creatorcontrib><creatorcontrib>Cha, Hyung Joon</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Biomaterials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yun, Jinyoung</au><au>Woo, Hyun Tack</au><au>Lee, Sangmin</au><au>Cha, Hyung Joon</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Visible light-induced simultaneous bioactive amorphous calcium phosphate mineralization and in situ crosslinking of coacervate-based injectable underwater adhesive hydrogels for enhanced bone regeneration</atitle><jtitle>Biomaterials</jtitle><addtitle>Biomaterials</addtitle><date>2025-04-01</date><risdate>2025</risdate><volume>315</volume><spage>122948</spage><pages>122948-</pages><artnum>122948</artnum><issn>0142-9612</issn><issn>1878-5905</issn><eissn>1878-5905</eissn><abstract>The field of bone tissue engineering is vital due to increasing bone disorders and limitations of traditional grafts. Injectable hydrogels offer minimally invasive solutions but often lack mechanical integrity and biological functionality, including osteoinductive capacity and structural stability under physiological conditions. To address these issues, we propose a coacervate-based injectable adhesive hydrogel that utilizes the dual functionality of in situ photocrosslinking and osteoinductive amorphous calcium phosphate formation, both of which are activated simultaneously by visible light irradiation. The developed hydrogel formulation integrated a photoreactive agent with calcium ions and phosphonodiol in a matrix of tyramine-conjugated alginate and RGD peptide-fused bioengineered mussel adhesive protein, promoting rapid setting, robust underwater adhesion, and bioactive mineral deposition. The hydrogel also exhibited superior mechanical properties, including enhanced underwater tissue adhesive strength and compressive resistance. In vivo evaluation using a rat femoral tunnel defect model confirmed the efficacy of the developed adhesive hydrogel in facilitating easy application to irregularly shaped defects through injection, rapid bone regeneration without the addition of bone grafts, and integration within the defect sites. This injectable adhesive hydrogel system holds significant potential for advancing bone tissue engineering, providing a versatile, efficient, and biologically favorable alternative to conventional bone repair methodologies.</abstract><cop>Netherlands</cop><pub>Elsevier Ltd</pub><pmid>39522352</pmid><doi>10.1016/j.biomaterials.2024.122948</doi><orcidid>https://orcid.org/0000-0003-4640-189X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0142-9612 |
ispartof | Biomaterials, 2025-04, Vol.315, p.122948, Article 122948 |
issn | 0142-9612 1878-5905 1878-5905 |
language | eng |
recordid | cdi_proquest_miscellaneous_3128746649 |
source | Elsevier ScienceDirect Journals Complete - AutoHoldings; MEDLINE |
subjects | adhesion alginates Animals biocompatible materials Bone regeneration Bone Regeneration - drug effects bones Calcification, Physiologic - drug effects calcium calcium phosphates Calcium Phosphates - chemistry Coacervate-based adhesive hydrogel Cross-Linking Reagents - chemistry crosslinking hydrogels Hydrogels - chemistry Injectable bone graft Injections irradiation Light Male mineralization Mussel adhesive protein mussels Photomineralization Rats Rats, Sprague-Dawley Tissue Engineering - methods |
title | Visible light-induced simultaneous bioactive amorphous calcium phosphate mineralization and in situ crosslinking of coacervate-based injectable underwater adhesive hydrogels for enhanced bone regeneration |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T10%3A12%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Visible%20light-induced%20simultaneous%20bioactive%20amorphous%20calcium%20phosphate%20mineralization%20and%20in%20situ%20crosslinking%20of%20coacervate-based%20injectable%20underwater%20adhesive%20hydrogels%20for%20enhanced%20bone%20regeneration&rft.jtitle=Biomaterials&rft.au=Yun,%20Jinyoung&rft.date=2025-04-01&rft.volume=315&rft.spage=122948&rft.pages=122948-&rft.artnum=122948&rft.issn=0142-9612&rft.eissn=1878-5905&rft_id=info:doi/10.1016/j.biomaterials.2024.122948&rft_dat=%3Cproquest_cross%3E3154261245%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3128746649&rft_id=info:pmid/39522352&rft_els_id=S0142961224004836&rfr_iscdi=true |