Visible light-induced simultaneous bioactive amorphous calcium phosphate mineralization and in situ crosslinking of coacervate-based injectable underwater adhesive hydrogels for enhanced bone regeneration

The field of bone tissue engineering is vital due to increasing bone disorders and limitations of traditional grafts. Injectable hydrogels offer minimally invasive solutions but often lack mechanical integrity and biological functionality, including osteoinductive capacity and structural stability u...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biomaterials 2025-04, Vol.315, p.122948, Article 122948
Hauptverfasser: Yun, Jinyoung, Woo, Hyun Tack, Lee, Sangmin, Cha, Hyung Joon
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 122948
container_title Biomaterials
container_volume 315
creator Yun, Jinyoung
Woo, Hyun Tack
Lee, Sangmin
Cha, Hyung Joon
description The field of bone tissue engineering is vital due to increasing bone disorders and limitations of traditional grafts. Injectable hydrogels offer minimally invasive solutions but often lack mechanical integrity and biological functionality, including osteoinductive capacity and structural stability under physiological conditions. To address these issues, we propose a coacervate-based injectable adhesive hydrogel that utilizes the dual functionality of in situ photocrosslinking and osteoinductive amorphous calcium phosphate formation, both of which are activated simultaneously by visible light irradiation. The developed hydrogel formulation integrated a photoreactive agent with calcium ions and phosphonodiol in a matrix of tyramine-conjugated alginate and RGD peptide-fused bioengineered mussel adhesive protein, promoting rapid setting, robust underwater adhesion, and bioactive mineral deposition. The hydrogel also exhibited superior mechanical properties, including enhanced underwater tissue adhesive strength and compressive resistance. In vivo evaluation using a rat femoral tunnel defect model confirmed the efficacy of the developed adhesive hydrogel in facilitating easy application to irregularly shaped defects through injection, rapid bone regeneration without the addition of bone grafts, and integration within the defect sites. This injectable adhesive hydrogel system holds significant potential for advancing bone tissue engineering, providing a versatile, efficient, and biologically favorable alternative to conventional bone repair methodologies.
doi_str_mv 10.1016/j.biomaterials.2024.122948
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3128746649</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0142961224004836</els_id><sourcerecordid>3154261245</sourcerecordid><originalsourceid>FETCH-LOGICAL-c286t-c73cb2bf1f1be91ba97a6cc73d15babbe9ed75c1d3dccc778c4730eaa01b2f013</originalsourceid><addsrcrecordid>eNqNUcuO1DAQjBCIHRZ-AVmcuGSwnTc3tMtLWokLcLX86Ex6cOzBTgYt38hHYZMFcdyT1aXqrnJVUbxgdM8oa18d9wr9LBcIKG3cc8rrPeN8qPsHxY71XV82A20eFjvKal4OLeMXxZMYjzTNtOaPi4tqaDivGr4rfn3FiMoCsXiYlhKdWTUYEnFe7SId-DWSpCb1gmcgcvbhNGVMS6txnUma4mlKXsiMDoK0-FMu6B2RzhB06dCyEh18jBbdN3QH4kei0z0I57RVKhkhE4-gF5l9rM5A-JE_R6SZIGbZ6dYEfwAbyegDATdJl00q74AEOEAWzqJPi0djSgSe3b2XxZd3bz9ffShvPr3_ePXmptS8b5dSd5VWXI1sZAoGpuTQyVYn1LBGSZUwMF2jmamMTnDX67qrKEhJmeIjZdVl8XK7ewr--wpxETNGDdZugYmKNTVPsdfNPai87-q2rYdEfb1R_8QVYBSngLMMt4JRkYsXR_F_8SIXL7bi0_LzO51VzWD-rf5tOhGuN0KKEc4IQUSNkHPEkLIXxuN9dH4DVMPOwg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3128746649</pqid></control><display><type>article</type><title>Visible light-induced simultaneous bioactive amorphous calcium phosphate mineralization and in situ crosslinking of coacervate-based injectable underwater adhesive hydrogels for enhanced bone regeneration</title><source>Elsevier ScienceDirect Journals Complete - AutoHoldings</source><source>MEDLINE</source><creator>Yun, Jinyoung ; Woo, Hyun Tack ; Lee, Sangmin ; Cha, Hyung Joon</creator><creatorcontrib>Yun, Jinyoung ; Woo, Hyun Tack ; Lee, Sangmin ; Cha, Hyung Joon</creatorcontrib><description>The field of bone tissue engineering is vital due to increasing bone disorders and limitations of traditional grafts. Injectable hydrogels offer minimally invasive solutions but often lack mechanical integrity and biological functionality, including osteoinductive capacity and structural stability under physiological conditions. To address these issues, we propose a coacervate-based injectable adhesive hydrogel that utilizes the dual functionality of in situ photocrosslinking and osteoinductive amorphous calcium phosphate formation, both of which are activated simultaneously by visible light irradiation. The developed hydrogel formulation integrated a photoreactive agent with calcium ions and phosphonodiol in a matrix of tyramine-conjugated alginate and RGD peptide-fused bioengineered mussel adhesive protein, promoting rapid setting, robust underwater adhesion, and bioactive mineral deposition. The hydrogel also exhibited superior mechanical properties, including enhanced underwater tissue adhesive strength and compressive resistance. In vivo evaluation using a rat femoral tunnel defect model confirmed the efficacy of the developed adhesive hydrogel in facilitating easy application to irregularly shaped defects through injection, rapid bone regeneration without the addition of bone grafts, and integration within the defect sites. This injectable adhesive hydrogel system holds significant potential for advancing bone tissue engineering, providing a versatile, efficient, and biologically favorable alternative to conventional bone repair methodologies.</description><identifier>ISSN: 0142-9612</identifier><identifier>ISSN: 1878-5905</identifier><identifier>EISSN: 1878-5905</identifier><identifier>DOI: 10.1016/j.biomaterials.2024.122948</identifier><identifier>PMID: 39522352</identifier><language>eng</language><publisher>Netherlands: Elsevier Ltd</publisher><subject>adhesion ; alginates ; Animals ; biocompatible materials ; Bone regeneration ; Bone Regeneration - drug effects ; bones ; Calcification, Physiologic - drug effects ; calcium ; calcium phosphates ; Calcium Phosphates - chemistry ; Coacervate-based adhesive hydrogel ; Cross-Linking Reagents - chemistry ; crosslinking ; hydrogels ; Hydrogels - chemistry ; Injectable bone graft ; Injections ; irradiation ; Light ; Male ; mineralization ; Mussel adhesive protein ; mussels ; Photomineralization ; Rats ; Rats, Sprague-Dawley ; Tissue Engineering - methods</subject><ispartof>Biomaterials, 2025-04, Vol.315, p.122948, Article 122948</ispartof><rights>2024 Elsevier Ltd</rights><rights>Copyright © 2024 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c286t-c73cb2bf1f1be91ba97a6cc73d15babbe9ed75c1d3dccc778c4730eaa01b2f013</cites><orcidid>0000-0003-4640-189X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.biomaterials.2024.122948$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,778,782,3539,27911,27912,45982</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39522352$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yun, Jinyoung</creatorcontrib><creatorcontrib>Woo, Hyun Tack</creatorcontrib><creatorcontrib>Lee, Sangmin</creatorcontrib><creatorcontrib>Cha, Hyung Joon</creatorcontrib><title>Visible light-induced simultaneous bioactive amorphous calcium phosphate mineralization and in situ crosslinking of coacervate-based injectable underwater adhesive hydrogels for enhanced bone regeneration</title><title>Biomaterials</title><addtitle>Biomaterials</addtitle><description>The field of bone tissue engineering is vital due to increasing bone disorders and limitations of traditional grafts. Injectable hydrogels offer minimally invasive solutions but often lack mechanical integrity and biological functionality, including osteoinductive capacity and structural stability under physiological conditions. To address these issues, we propose a coacervate-based injectable adhesive hydrogel that utilizes the dual functionality of in situ photocrosslinking and osteoinductive amorphous calcium phosphate formation, both of which are activated simultaneously by visible light irradiation. The developed hydrogel formulation integrated a photoreactive agent with calcium ions and phosphonodiol in a matrix of tyramine-conjugated alginate and RGD peptide-fused bioengineered mussel adhesive protein, promoting rapid setting, robust underwater adhesion, and bioactive mineral deposition. The hydrogel also exhibited superior mechanical properties, including enhanced underwater tissue adhesive strength and compressive resistance. In vivo evaluation using a rat femoral tunnel defect model confirmed the efficacy of the developed adhesive hydrogel in facilitating easy application to irregularly shaped defects through injection, rapid bone regeneration without the addition of bone grafts, and integration within the defect sites. This injectable adhesive hydrogel system holds significant potential for advancing bone tissue engineering, providing a versatile, efficient, and biologically favorable alternative to conventional bone repair methodologies.</description><subject>adhesion</subject><subject>alginates</subject><subject>Animals</subject><subject>biocompatible materials</subject><subject>Bone regeneration</subject><subject>Bone Regeneration - drug effects</subject><subject>bones</subject><subject>Calcification, Physiologic - drug effects</subject><subject>calcium</subject><subject>calcium phosphates</subject><subject>Calcium Phosphates - chemistry</subject><subject>Coacervate-based adhesive hydrogel</subject><subject>Cross-Linking Reagents - chemistry</subject><subject>crosslinking</subject><subject>hydrogels</subject><subject>Hydrogels - chemistry</subject><subject>Injectable bone graft</subject><subject>Injections</subject><subject>irradiation</subject><subject>Light</subject><subject>Male</subject><subject>mineralization</subject><subject>Mussel adhesive protein</subject><subject>mussels</subject><subject>Photomineralization</subject><subject>Rats</subject><subject>Rats, Sprague-Dawley</subject><subject>Tissue Engineering - methods</subject><issn>0142-9612</issn><issn>1878-5905</issn><issn>1878-5905</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNUcuO1DAQjBCIHRZ-AVmcuGSwnTc3tMtLWokLcLX86Ex6cOzBTgYt38hHYZMFcdyT1aXqrnJVUbxgdM8oa18d9wr9LBcIKG3cc8rrPeN8qPsHxY71XV82A20eFjvKal4OLeMXxZMYjzTNtOaPi4tqaDivGr4rfn3FiMoCsXiYlhKdWTUYEnFe7SId-DWSpCb1gmcgcvbhNGVMS6txnUma4mlKXsiMDoK0-FMu6B2RzhB06dCyEh18jBbdN3QH4kei0z0I57RVKhkhE4-gF5l9rM5A-JE_R6SZIGbZ6dYEfwAbyegDATdJl00q74AEOEAWzqJPi0djSgSe3b2XxZd3bz9ffShvPr3_ePXmptS8b5dSd5VWXI1sZAoGpuTQyVYn1LBGSZUwMF2jmamMTnDX67qrKEhJmeIjZdVl8XK7ewr--wpxETNGDdZugYmKNTVPsdfNPai87-q2rYdEfb1R_8QVYBSngLMMt4JRkYsXR_F_8SIXL7bi0_LzO51VzWD-rf5tOhGuN0KKEc4IQUSNkHPEkLIXxuN9dH4DVMPOwg</recordid><startdate>20250401</startdate><enddate>20250401</enddate><creator>Yun, Jinyoung</creator><creator>Woo, Hyun Tack</creator><creator>Lee, Sangmin</creator><creator>Cha, Hyung Joon</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><orcidid>https://orcid.org/0000-0003-4640-189X</orcidid></search><sort><creationdate>20250401</creationdate><title>Visible light-induced simultaneous bioactive amorphous calcium phosphate mineralization and in situ crosslinking of coacervate-based injectable underwater adhesive hydrogels for enhanced bone regeneration</title><author>Yun, Jinyoung ; Woo, Hyun Tack ; Lee, Sangmin ; Cha, Hyung Joon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c286t-c73cb2bf1f1be91ba97a6cc73d15babbe9ed75c1d3dccc778c4730eaa01b2f013</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>adhesion</topic><topic>alginates</topic><topic>Animals</topic><topic>biocompatible materials</topic><topic>Bone regeneration</topic><topic>Bone Regeneration - drug effects</topic><topic>bones</topic><topic>Calcification, Physiologic - drug effects</topic><topic>calcium</topic><topic>calcium phosphates</topic><topic>Calcium Phosphates - chemistry</topic><topic>Coacervate-based adhesive hydrogel</topic><topic>Cross-Linking Reagents - chemistry</topic><topic>crosslinking</topic><topic>hydrogels</topic><topic>Hydrogels - chemistry</topic><topic>Injectable bone graft</topic><topic>Injections</topic><topic>irradiation</topic><topic>Light</topic><topic>Male</topic><topic>mineralization</topic><topic>Mussel adhesive protein</topic><topic>mussels</topic><topic>Photomineralization</topic><topic>Rats</topic><topic>Rats, Sprague-Dawley</topic><topic>Tissue Engineering - methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yun, Jinyoung</creatorcontrib><creatorcontrib>Woo, Hyun Tack</creatorcontrib><creatorcontrib>Lee, Sangmin</creatorcontrib><creatorcontrib>Cha, Hyung Joon</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Biomaterials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yun, Jinyoung</au><au>Woo, Hyun Tack</au><au>Lee, Sangmin</au><au>Cha, Hyung Joon</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Visible light-induced simultaneous bioactive amorphous calcium phosphate mineralization and in situ crosslinking of coacervate-based injectable underwater adhesive hydrogels for enhanced bone regeneration</atitle><jtitle>Biomaterials</jtitle><addtitle>Biomaterials</addtitle><date>2025-04-01</date><risdate>2025</risdate><volume>315</volume><spage>122948</spage><pages>122948-</pages><artnum>122948</artnum><issn>0142-9612</issn><issn>1878-5905</issn><eissn>1878-5905</eissn><abstract>The field of bone tissue engineering is vital due to increasing bone disorders and limitations of traditional grafts. Injectable hydrogels offer minimally invasive solutions but often lack mechanical integrity and biological functionality, including osteoinductive capacity and structural stability under physiological conditions. To address these issues, we propose a coacervate-based injectable adhesive hydrogel that utilizes the dual functionality of in situ photocrosslinking and osteoinductive amorphous calcium phosphate formation, both of which are activated simultaneously by visible light irradiation. The developed hydrogel formulation integrated a photoreactive agent with calcium ions and phosphonodiol in a matrix of tyramine-conjugated alginate and RGD peptide-fused bioengineered mussel adhesive protein, promoting rapid setting, robust underwater adhesion, and bioactive mineral deposition. The hydrogel also exhibited superior mechanical properties, including enhanced underwater tissue adhesive strength and compressive resistance. In vivo evaluation using a rat femoral tunnel defect model confirmed the efficacy of the developed adhesive hydrogel in facilitating easy application to irregularly shaped defects through injection, rapid bone regeneration without the addition of bone grafts, and integration within the defect sites. This injectable adhesive hydrogel system holds significant potential for advancing bone tissue engineering, providing a versatile, efficient, and biologically favorable alternative to conventional bone repair methodologies.</abstract><cop>Netherlands</cop><pub>Elsevier Ltd</pub><pmid>39522352</pmid><doi>10.1016/j.biomaterials.2024.122948</doi><orcidid>https://orcid.org/0000-0003-4640-189X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0142-9612
ispartof Biomaterials, 2025-04, Vol.315, p.122948, Article 122948
issn 0142-9612
1878-5905
1878-5905
language eng
recordid cdi_proquest_miscellaneous_3128746649
source Elsevier ScienceDirect Journals Complete - AutoHoldings; MEDLINE
subjects adhesion
alginates
Animals
biocompatible materials
Bone regeneration
Bone Regeneration - drug effects
bones
Calcification, Physiologic - drug effects
calcium
calcium phosphates
Calcium Phosphates - chemistry
Coacervate-based adhesive hydrogel
Cross-Linking Reagents - chemistry
crosslinking
hydrogels
Hydrogels - chemistry
Injectable bone graft
Injections
irradiation
Light
Male
mineralization
Mussel adhesive protein
mussels
Photomineralization
Rats
Rats, Sprague-Dawley
Tissue Engineering - methods
title Visible light-induced simultaneous bioactive amorphous calcium phosphate mineralization and in situ crosslinking of coacervate-based injectable underwater adhesive hydrogels for enhanced bone regeneration
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T10%3A12%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Visible%20light-induced%20simultaneous%20bioactive%20amorphous%20calcium%20phosphate%20mineralization%20and%20in%20situ%20crosslinking%20of%20coacervate-based%20injectable%20underwater%20adhesive%20hydrogels%20for%20enhanced%20bone%20regeneration&rft.jtitle=Biomaterials&rft.au=Yun,%20Jinyoung&rft.date=2025-04-01&rft.volume=315&rft.spage=122948&rft.pages=122948-&rft.artnum=122948&rft.issn=0142-9612&rft.eissn=1878-5905&rft_id=info:doi/10.1016/j.biomaterials.2024.122948&rft_dat=%3Cproquest_cross%3E3154261245%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3128746649&rft_id=info:pmid/39522352&rft_els_id=S0142961224004836&rfr_iscdi=true