Modular hydrogel selectively adsorbs phosphates and hexavalent chromium while enabling phosphate recovery

[Display omitted] •Alginate as the framework module; lanthanum carbonate in chitosan adsorbs phosphate; PEI module enhances Cr(VI) uptake.•Phosphate is recovered as DCPD from LC-CSP desorption solution.•LC-CSP adsorbs 232.02 mg/g phosphate and 474.61 mg/g Cr(VI), retaining 90.72 % performance in sim...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of colloid and interface science 2025-02, Vol.680 (Pt A), p.373-386
Hauptverfasser: Su, Miao, Hu, Jiabao, Liu, ZiSheng, Liu, Sicheng, Wang, Binsong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 386
container_issue Pt A
container_start_page 373
container_title Journal of colloid and interface science
container_volume 680
creator Su, Miao
Hu, Jiabao
Liu, ZiSheng
Liu, Sicheng
Wang, Binsong
description [Display omitted] •Alginate as the framework module; lanthanum carbonate in chitosan adsorbs phosphate; PEI module enhances Cr(VI) uptake.•Phosphate is recovered as DCPD from LC-CSP desorption solution.•LC-CSP adsorbs 232.02 mg/g phosphate and 474.61 mg/g Cr(VI), retaining 90.72 % performance in simulated wastewater.•Maintains high performance with minimal change after five uses, indicating good mechanical strength and reusability.•Adsorption mechanisms include ligand exchange and reduction, along with electrostatic interactions and hydrogen bonding. Electroplating wastewater containing high concentrations of phosphates and hexavalent chromium Cr(VI) poses serious environmental pollution. Moreover, phosphorus, as a non-renewable resource, necessitates its recovery to meet sustainable development goals. To address this issue, this study used sodium alginate as the scaffold module, synthesized lanthanum carbonate in situ within a chitosan module to serve as the phosphate adsorption module, and employed polyethyleneimine (PEI) modules to enhance the adsorption capacity for Cr(VI), successfully fabricating a modular hydrogel (LC-CSP). LC-CSP exhibits a complex porous structure and surface morphology, forming an ultra-low-density fiber network with good strength and elasticity, ensuring uniform distribution and exposure of active sites. Under optimal conditions for single-component adsorption, LC-CSP achieved adsorption capacities of 232.02 mg/g for phosphates and 474.61 mg/g for Cr(VI). Additionally, LC-CSP demonstrated excellent reusability, retaining over 83 % of its performance after five cycles. In simulated electroplating wastewater experiments with various interfering substances, LC-CSP maintained high removal efficiencies (>90.72 %) for phosphates and Cr(VI). Post-experiment, enriched water after phosphate desorption was further treated to recover phosphorus resources in complex water environments. Multiple characterization techniques elucidated the adsorption mechanisms of LC-CSP: phosphate adsorption primarily involved ligand exchange, electrostatic interactions, and hydrogen bonding, while Cr(VI) adsorption included electrostatic interactions, hydrogen bonding, and reduction reactions. Finally, fixed-bed simulated wastewater adsorption experiments validated the technical potential of LC-CSP for practical electroplating wastewater management.
doi_str_mv 10.1016/j.jcis.2024.11.005
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3128746026</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021979724025621</els_id><sourcerecordid>3128746026</sourcerecordid><originalsourceid>FETCH-LOGICAL-c237t-2595923da22dd4502080a1d7de0abfb5e69272933e04cce9d97da33359828a473</originalsourceid><addsrcrecordid>eNp9kDtv2zAURomiQeM8_kCHgmMXKZekaJpAliJoHkCCLO1MUOR1RIMSXVJy6n9fGU7TrdNdzneAewj5zKBmwJZXm3rjQqk58KZmrAaQH8iCgZaVYiA-kgUAZ5VWWp2Ss1I2AIxJqT-RU6ElB93AgoSn5KdoM-32PqcXjLRgRDeGHcY9tb6k3Ba67VLZdnbEQu3gaYe_7c5GHEbqupz6MPX0tQsRKQ62jWF4-begGV3aYd5fkJO1jQUv3-45-Xn7_cfNffX4fPdw8-2xclyoseJSS82Ft5x730jgsALLvPIItl23EpeaK66FQGicQ-218lYIIfWKr2yjxDn5evRuc_o1YRlNH4rDGO2AaSpGML5SzRL4ckb5EXU5lZJxbbY59DbvDQNzSGw25pDYHBIbxsyceB59efNPbY_-ffK36QxcHwGcv9wFzKa4gINDH-YWo_Ep_M__B7Lsjuk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3128746026</pqid></control><display><type>article</type><title>Modular hydrogel selectively adsorbs phosphates and hexavalent chromium while enabling phosphate recovery</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Su, Miao ; Hu, Jiabao ; Liu, ZiSheng ; Liu, Sicheng ; Wang, Binsong</creator><creatorcontrib>Su, Miao ; Hu, Jiabao ; Liu, ZiSheng ; Liu, Sicheng ; Wang, Binsong</creatorcontrib><description>[Display omitted] •Alginate as the framework module; lanthanum carbonate in chitosan adsorbs phosphate; PEI module enhances Cr(VI) uptake.•Phosphate is recovered as DCPD from LC-CSP desorption solution.•LC-CSP adsorbs 232.02 mg/g phosphate and 474.61 mg/g Cr(VI), retaining 90.72 % performance in simulated wastewater.•Maintains high performance with minimal change after five uses, indicating good mechanical strength and reusability.•Adsorption mechanisms include ligand exchange and reduction, along with electrostatic interactions and hydrogen bonding. Electroplating wastewater containing high concentrations of phosphates and hexavalent chromium Cr(VI) poses serious environmental pollution. Moreover, phosphorus, as a non-renewable resource, necessitates its recovery to meet sustainable development goals. To address this issue, this study used sodium alginate as the scaffold module, synthesized lanthanum carbonate in situ within a chitosan module to serve as the phosphate adsorption module, and employed polyethyleneimine (PEI) modules to enhance the adsorption capacity for Cr(VI), successfully fabricating a modular hydrogel (LC-CSP). LC-CSP exhibits a complex porous structure and surface morphology, forming an ultra-low-density fiber network with good strength and elasticity, ensuring uniform distribution and exposure of active sites. Under optimal conditions for single-component adsorption, LC-CSP achieved adsorption capacities of 232.02 mg/g for phosphates and 474.61 mg/g for Cr(VI). Additionally, LC-CSP demonstrated excellent reusability, retaining over 83 % of its performance after five cycles. In simulated electroplating wastewater experiments with various interfering substances, LC-CSP maintained high removal efficiencies (&gt;90.72 %) for phosphates and Cr(VI). Post-experiment, enriched water after phosphate desorption was further treated to recover phosphorus resources in complex water environments. Multiple characterization techniques elucidated the adsorption mechanisms of LC-CSP: phosphate adsorption primarily involved ligand exchange, electrostatic interactions, and hydrogen bonding, while Cr(VI) adsorption included electrostatic interactions, hydrogen bonding, and reduction reactions. Finally, fixed-bed simulated wastewater adsorption experiments validated the technical potential of LC-CSP for practical electroplating wastewater management.</description><identifier>ISSN: 0021-9797</identifier><identifier>ISSN: 1095-7103</identifier><identifier>EISSN: 1095-7103</identifier><identifier>DOI: 10.1016/j.jcis.2024.11.005</identifier><identifier>PMID: 39520940</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Asorption ; Eectroplating wastewater ; Hxavalent chromium ; Modular hydrogel ; Posphate ; Posphate recovery</subject><ispartof>Journal of colloid and interface science, 2025-02, Vol.680 (Pt A), p.373-386</ispartof><rights>2024</rights><rights>Copyright © 2024. Published by Elsevier Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c237t-2595923da22dd4502080a1d7de0abfb5e69272933e04cce9d97da33359828a473</cites><orcidid>0000-0003-4301-2733</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jcis.2024.11.005$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39520940$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Su, Miao</creatorcontrib><creatorcontrib>Hu, Jiabao</creatorcontrib><creatorcontrib>Liu, ZiSheng</creatorcontrib><creatorcontrib>Liu, Sicheng</creatorcontrib><creatorcontrib>Wang, Binsong</creatorcontrib><title>Modular hydrogel selectively adsorbs phosphates and hexavalent chromium while enabling phosphate recovery</title><title>Journal of colloid and interface science</title><addtitle>J Colloid Interface Sci</addtitle><description>[Display omitted] •Alginate as the framework module; lanthanum carbonate in chitosan adsorbs phosphate; PEI module enhances Cr(VI) uptake.•Phosphate is recovered as DCPD from LC-CSP desorption solution.•LC-CSP adsorbs 232.02 mg/g phosphate and 474.61 mg/g Cr(VI), retaining 90.72 % performance in simulated wastewater.•Maintains high performance with minimal change after five uses, indicating good mechanical strength and reusability.•Adsorption mechanisms include ligand exchange and reduction, along with electrostatic interactions and hydrogen bonding. Electroplating wastewater containing high concentrations of phosphates and hexavalent chromium Cr(VI) poses serious environmental pollution. Moreover, phosphorus, as a non-renewable resource, necessitates its recovery to meet sustainable development goals. To address this issue, this study used sodium alginate as the scaffold module, synthesized lanthanum carbonate in situ within a chitosan module to serve as the phosphate adsorption module, and employed polyethyleneimine (PEI) modules to enhance the adsorption capacity for Cr(VI), successfully fabricating a modular hydrogel (LC-CSP). LC-CSP exhibits a complex porous structure and surface morphology, forming an ultra-low-density fiber network with good strength and elasticity, ensuring uniform distribution and exposure of active sites. Under optimal conditions for single-component adsorption, LC-CSP achieved adsorption capacities of 232.02 mg/g for phosphates and 474.61 mg/g for Cr(VI). Additionally, LC-CSP demonstrated excellent reusability, retaining over 83 % of its performance after five cycles. In simulated electroplating wastewater experiments with various interfering substances, LC-CSP maintained high removal efficiencies (&gt;90.72 %) for phosphates and Cr(VI). Post-experiment, enriched water after phosphate desorption was further treated to recover phosphorus resources in complex water environments. Multiple characterization techniques elucidated the adsorption mechanisms of LC-CSP: phosphate adsorption primarily involved ligand exchange, electrostatic interactions, and hydrogen bonding, while Cr(VI) adsorption included electrostatic interactions, hydrogen bonding, and reduction reactions. Finally, fixed-bed simulated wastewater adsorption experiments validated the technical potential of LC-CSP for practical electroplating wastewater management.</description><subject>Asorption</subject><subject>Eectroplating wastewater</subject><subject>Hxavalent chromium</subject><subject>Modular hydrogel</subject><subject>Posphate</subject><subject>Posphate recovery</subject><issn>0021-9797</issn><issn>1095-7103</issn><issn>1095-7103</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><recordid>eNp9kDtv2zAURomiQeM8_kCHgmMXKZekaJpAliJoHkCCLO1MUOR1RIMSXVJy6n9fGU7TrdNdzneAewj5zKBmwJZXm3rjQqk58KZmrAaQH8iCgZaVYiA-kgUAZ5VWWp2Ss1I2AIxJqT-RU6ElB93AgoSn5KdoM-32PqcXjLRgRDeGHcY9tb6k3Ba67VLZdnbEQu3gaYe_7c5GHEbqupz6MPX0tQsRKQ62jWF4-begGV3aYd5fkJO1jQUv3-45-Xn7_cfNffX4fPdw8-2xclyoseJSS82Ft5x730jgsALLvPIItl23EpeaK66FQGicQ-218lYIIfWKr2yjxDn5evRuc_o1YRlNH4rDGO2AaSpGML5SzRL4ckb5EXU5lZJxbbY59DbvDQNzSGw25pDYHBIbxsyceB59efNPbY_-ffK36QxcHwGcv9wFzKa4gINDH-YWo_Ep_M__B7Lsjuk</recordid><startdate>20250215</startdate><enddate>20250215</enddate><creator>Su, Miao</creator><creator>Hu, Jiabao</creator><creator>Liu, ZiSheng</creator><creator>Liu, Sicheng</creator><creator>Wang, Binsong</creator><general>Elsevier Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-4301-2733</orcidid></search><sort><creationdate>20250215</creationdate><title>Modular hydrogel selectively adsorbs phosphates and hexavalent chromium while enabling phosphate recovery</title><author>Su, Miao ; Hu, Jiabao ; Liu, ZiSheng ; Liu, Sicheng ; Wang, Binsong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c237t-2595923da22dd4502080a1d7de0abfb5e69272933e04cce9d97da33359828a473</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>Asorption</topic><topic>Eectroplating wastewater</topic><topic>Hxavalent chromium</topic><topic>Modular hydrogel</topic><topic>Posphate</topic><topic>Posphate recovery</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Su, Miao</creatorcontrib><creatorcontrib>Hu, Jiabao</creatorcontrib><creatorcontrib>Liu, ZiSheng</creatorcontrib><creatorcontrib>Liu, Sicheng</creatorcontrib><creatorcontrib>Wang, Binsong</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of colloid and interface science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Su, Miao</au><au>Hu, Jiabao</au><au>Liu, ZiSheng</au><au>Liu, Sicheng</au><au>Wang, Binsong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modular hydrogel selectively adsorbs phosphates and hexavalent chromium while enabling phosphate recovery</atitle><jtitle>Journal of colloid and interface science</jtitle><addtitle>J Colloid Interface Sci</addtitle><date>2025-02-15</date><risdate>2025</risdate><volume>680</volume><issue>Pt A</issue><spage>373</spage><epage>386</epage><pages>373-386</pages><issn>0021-9797</issn><issn>1095-7103</issn><eissn>1095-7103</eissn><abstract>[Display omitted] •Alginate as the framework module; lanthanum carbonate in chitosan adsorbs phosphate; PEI module enhances Cr(VI) uptake.•Phosphate is recovered as DCPD from LC-CSP desorption solution.•LC-CSP adsorbs 232.02 mg/g phosphate and 474.61 mg/g Cr(VI), retaining 90.72 % performance in simulated wastewater.•Maintains high performance with minimal change after five uses, indicating good mechanical strength and reusability.•Adsorption mechanisms include ligand exchange and reduction, along with electrostatic interactions and hydrogen bonding. Electroplating wastewater containing high concentrations of phosphates and hexavalent chromium Cr(VI) poses serious environmental pollution. Moreover, phosphorus, as a non-renewable resource, necessitates its recovery to meet sustainable development goals. To address this issue, this study used sodium alginate as the scaffold module, synthesized lanthanum carbonate in situ within a chitosan module to serve as the phosphate adsorption module, and employed polyethyleneimine (PEI) modules to enhance the adsorption capacity for Cr(VI), successfully fabricating a modular hydrogel (LC-CSP). LC-CSP exhibits a complex porous structure and surface morphology, forming an ultra-low-density fiber network with good strength and elasticity, ensuring uniform distribution and exposure of active sites. Under optimal conditions for single-component adsorption, LC-CSP achieved adsorption capacities of 232.02 mg/g for phosphates and 474.61 mg/g for Cr(VI). Additionally, LC-CSP demonstrated excellent reusability, retaining over 83 % of its performance after five cycles. In simulated electroplating wastewater experiments with various interfering substances, LC-CSP maintained high removal efficiencies (&gt;90.72 %) for phosphates and Cr(VI). Post-experiment, enriched water after phosphate desorption was further treated to recover phosphorus resources in complex water environments. Multiple characterization techniques elucidated the adsorption mechanisms of LC-CSP: phosphate adsorption primarily involved ligand exchange, electrostatic interactions, and hydrogen bonding, while Cr(VI) adsorption included electrostatic interactions, hydrogen bonding, and reduction reactions. Finally, fixed-bed simulated wastewater adsorption experiments validated the technical potential of LC-CSP for practical electroplating wastewater management.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>39520940</pmid><doi>10.1016/j.jcis.2024.11.005</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-4301-2733</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0021-9797
ispartof Journal of colloid and interface science, 2025-02, Vol.680 (Pt A), p.373-386
issn 0021-9797
1095-7103
1095-7103
language eng
recordid cdi_proquest_miscellaneous_3128746026
source Elsevier ScienceDirect Journals Complete
subjects Asorption
Eectroplating wastewater
Hxavalent chromium
Modular hydrogel
Posphate
Posphate recovery
title Modular hydrogel selectively adsorbs phosphates and hexavalent chromium while enabling phosphate recovery
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T12%3A48%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modular%20hydrogel%20selectively%20adsorbs%20phosphates%20and%20hexavalent%20chromium%20while%20enabling%20phosphate%20recovery&rft.jtitle=Journal%20of%20colloid%20and%20interface%20science&rft.au=Su,%20Miao&rft.date=2025-02-15&rft.volume=680&rft.issue=Pt%20A&rft.spage=373&rft.epage=386&rft.pages=373-386&rft.issn=0021-9797&rft.eissn=1095-7103&rft_id=info:doi/10.1016/j.jcis.2024.11.005&rft_dat=%3Cproquest_cross%3E3128746026%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3128746026&rft_id=info:pmid/39520940&rft_els_id=S0021979724025621&rfr_iscdi=true