An Electrochemical Study of the Effect of Sulfate on the Surface Oxidation of Pyrite

Pyrite is one of the most abundant metal sulfide tailings and is susceptible to oxidation, yielding acidic mine drainage (AMD) that poses significant environmental risks. Consequently, the exploration of pyrite surface oxidation and the kinetic influencing factors remains a pivotal research area. De...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials 2024-10, Vol.17 (21), p.5145
Hauptverfasser: Lv, Siqi, Liang, Yujian, Zhang, Xuezhen, Tan, Xiaomei, Huang, Zuotan, Guan, Xuan, Liu, Chongmin, Tu, Zhihong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 21
container_start_page 5145
container_title Materials
container_volume 17
creator Lv, Siqi
Liang, Yujian
Zhang, Xuezhen
Tan, Xiaomei
Huang, Zuotan
Guan, Xuan
Liu, Chongmin
Tu, Zhihong
description Pyrite is one of the most abundant metal sulfide tailings and is susceptible to oxidation, yielding acidic mine drainage (AMD) that poses significant environmental risks. Consequently, the exploration of pyrite surface oxidation and the kinetic influencing factors remains a pivotal research area. Despite the oxidation of pyrite producing a significant amount of sulfate (SO ), a comprehensive investigation into its influence on the oxidation process is lacking. Leveraging pyrite's semiconducting nature and the electrochemical intricacies of its surface oxidation, this study employs electrochemical techniques-cyclic voltammetry (CV), Tafel polarization, and electrochemical impedance spectroscopy (EIS)-to assess the effect of SO ⁻ on pyrite surface oxidation. The CV curve shows that SO does not change the fundamental surface oxidation mechanism of pyrite, but its redox peak current density decreases with the increase in SO , and the surface oxidation rate of pyrite decreases. The possible reason is attributed to SO adsorption onto pyrite surfaces, blocking active sites and impeding the oxidation process. Furthermore, Tafel polarization curves indicate an augmentation in polarization resistance with elevated SO concentrations, signifying heightened difficulty in pyrite surface reactions. EIS analysis underscores an increase in Weber diffusion resistance with increasing SO ⁻, indicating that the diffusion of Fe to the pyrite surface and the diffusion of oxidized products to the solution becomes more difficult. These findings will improve our understanding of the influence of SO on pyrite oxidation and have important implications for deepening the understanding of surface oxidation of pyrite in the natural environment.
doi_str_mv 10.3390/ma17215145
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_3128740452</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A815346338</galeid><sourcerecordid>A815346338</sourcerecordid><originalsourceid>FETCH-LOGICAL-c279t-655be88b6380e26bd230b6c696c6d514f248c0b7855b4b8a556f449311c6465e3</originalsourceid><addsrcrecordid>eNpdkdtKAzEQhoMoVrQ3PoAseCNCNedNLovUAwgVWq-XbHZiV3Y3NZsF-_am1hNmCJPMfBNm8iN0SvAVYxpft4bklAjCxR46IlrLCdGc7_85j9C4719xWowRRfUhGjEtSM4pPULLaZfNGrAxeLuCtramyRZxqDaZd1lcQTZzLmW3t8XQOBMh891nYjEEZyxk8_e6MrFO0cQ8bUId4QQdONP0MP7yx-j5dra8uZ88zu8ebqaPE0tzHSdSiBKUKiVTGKgsK8pwKa3UaVdpIke5srjMVeJ4qYwQ0nGuGSFWcimAHaOL3bvr4N8G6GPR1r2FpjEd-KEvGKEq55gLmtDzf-irH0KXuttSElPFOE7U1Y56MQ0Uded8DMYmq7Zf4ztwdYpPFRGMS8ZUKrjcFdjg-z6AK9ahbk3YFAQXW32KX30SfPbVw1C2UP2g32qwD36XhvA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3126028340</pqid></control><display><type>article</type><title>An Electrochemical Study of the Effect of Sulfate on the Surface Oxidation of Pyrite</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>PubMed Central Open Access</source><creator>Lv, Siqi ; Liang, Yujian ; Zhang, Xuezhen ; Tan, Xiaomei ; Huang, Zuotan ; Guan, Xuan ; Liu, Chongmin ; Tu, Zhihong</creator><creatorcontrib>Lv, Siqi ; Liang, Yujian ; Zhang, Xuezhen ; Tan, Xiaomei ; Huang, Zuotan ; Guan, Xuan ; Liu, Chongmin ; Tu, Zhihong</creatorcontrib><description>Pyrite is one of the most abundant metal sulfide tailings and is susceptible to oxidation, yielding acidic mine drainage (AMD) that poses significant environmental risks. Consequently, the exploration of pyrite surface oxidation and the kinetic influencing factors remains a pivotal research area. Despite the oxidation of pyrite producing a significant amount of sulfate (SO ), a comprehensive investigation into its influence on the oxidation process is lacking. Leveraging pyrite's semiconducting nature and the electrochemical intricacies of its surface oxidation, this study employs electrochemical techniques-cyclic voltammetry (CV), Tafel polarization, and electrochemical impedance spectroscopy (EIS)-to assess the effect of SO ⁻ on pyrite surface oxidation. The CV curve shows that SO does not change the fundamental surface oxidation mechanism of pyrite, but its redox peak current density decreases with the increase in SO , and the surface oxidation rate of pyrite decreases. The possible reason is attributed to SO adsorption onto pyrite surfaces, blocking active sites and impeding the oxidation process. Furthermore, Tafel polarization curves indicate an augmentation in polarization resistance with elevated SO concentrations, signifying heightened difficulty in pyrite surface reactions. EIS analysis underscores an increase in Weber diffusion resistance with increasing SO ⁻, indicating that the diffusion of Fe to the pyrite surface and the diffusion of oxidized products to the solution becomes more difficult. These findings will improve our understanding of the influence of SO on pyrite oxidation and have important implications for deepening the understanding of surface oxidation of pyrite in the natural environment.</description><identifier>ISSN: 1996-1944</identifier><identifier>EISSN: 1996-1944</identifier><identifier>DOI: 10.3390/ma17215145</identifier><identifier>PMID: 39517422</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Acidic oxides ; Analysis ; Diffusion barriers ; Diffusion rate ; Electrochemical impedance spectroscopy ; Electrochemistry ; Electrode polarization ; Electrodes ; Electrolytes ; Influence ; Mine drainage ; Oxidation ; Oxidation rate ; Oxidation resistance ; Oxidation-reduction reaction ; Precious metals ; Pyrite ; Sulfates ; Sulfides ; Surface chemistry ; Surface reactions ; Test systems ; Voltammetry</subject><ispartof>Materials, 2024-10, Vol.17 (21), p.5145</ispartof><rights>COPYRIGHT 2024 MDPI AG</rights><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c279t-655be88b6380e26bd230b6c696c6d514f248c0b7855b4b8a556f449311c6465e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39517422$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lv, Siqi</creatorcontrib><creatorcontrib>Liang, Yujian</creatorcontrib><creatorcontrib>Zhang, Xuezhen</creatorcontrib><creatorcontrib>Tan, Xiaomei</creatorcontrib><creatorcontrib>Huang, Zuotan</creatorcontrib><creatorcontrib>Guan, Xuan</creatorcontrib><creatorcontrib>Liu, Chongmin</creatorcontrib><creatorcontrib>Tu, Zhihong</creatorcontrib><title>An Electrochemical Study of the Effect of Sulfate on the Surface Oxidation of Pyrite</title><title>Materials</title><addtitle>Materials (Basel)</addtitle><description>Pyrite is one of the most abundant metal sulfide tailings and is susceptible to oxidation, yielding acidic mine drainage (AMD) that poses significant environmental risks. Consequently, the exploration of pyrite surface oxidation and the kinetic influencing factors remains a pivotal research area. Despite the oxidation of pyrite producing a significant amount of sulfate (SO ), a comprehensive investigation into its influence on the oxidation process is lacking. Leveraging pyrite's semiconducting nature and the electrochemical intricacies of its surface oxidation, this study employs electrochemical techniques-cyclic voltammetry (CV), Tafel polarization, and electrochemical impedance spectroscopy (EIS)-to assess the effect of SO ⁻ on pyrite surface oxidation. The CV curve shows that SO does not change the fundamental surface oxidation mechanism of pyrite, but its redox peak current density decreases with the increase in SO , and the surface oxidation rate of pyrite decreases. The possible reason is attributed to SO adsorption onto pyrite surfaces, blocking active sites and impeding the oxidation process. Furthermore, Tafel polarization curves indicate an augmentation in polarization resistance with elevated SO concentrations, signifying heightened difficulty in pyrite surface reactions. EIS analysis underscores an increase in Weber diffusion resistance with increasing SO ⁻, indicating that the diffusion of Fe to the pyrite surface and the diffusion of oxidized products to the solution becomes more difficult. These findings will improve our understanding of the influence of SO on pyrite oxidation and have important implications for deepening the understanding of surface oxidation of pyrite in the natural environment.</description><subject>Acidic oxides</subject><subject>Analysis</subject><subject>Diffusion barriers</subject><subject>Diffusion rate</subject><subject>Electrochemical impedance spectroscopy</subject><subject>Electrochemistry</subject><subject>Electrode polarization</subject><subject>Electrodes</subject><subject>Electrolytes</subject><subject>Influence</subject><subject>Mine drainage</subject><subject>Oxidation</subject><subject>Oxidation rate</subject><subject>Oxidation resistance</subject><subject>Oxidation-reduction reaction</subject><subject>Precious metals</subject><subject>Pyrite</subject><subject>Sulfates</subject><subject>Sulfides</subject><subject>Surface chemistry</subject><subject>Surface reactions</subject><subject>Test systems</subject><subject>Voltammetry</subject><issn>1996-1944</issn><issn>1996-1944</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpdkdtKAzEQhoMoVrQ3PoAseCNCNedNLovUAwgVWq-XbHZiV3Y3NZsF-_am1hNmCJPMfBNm8iN0SvAVYxpft4bklAjCxR46IlrLCdGc7_85j9C4719xWowRRfUhGjEtSM4pPULLaZfNGrAxeLuCtramyRZxqDaZd1lcQTZzLmW3t8XQOBMh891nYjEEZyxk8_e6MrFO0cQ8bUId4QQdONP0MP7yx-j5dra8uZ88zu8ebqaPE0tzHSdSiBKUKiVTGKgsK8pwKa3UaVdpIke5srjMVeJ4qYwQ0nGuGSFWcimAHaOL3bvr4N8G6GPR1r2FpjEd-KEvGKEq55gLmtDzf-irH0KXuttSElPFOE7U1Y56MQ0Uded8DMYmq7Zf4ztwdYpPFRGMS8ZUKrjcFdjg-z6AK9ahbk3YFAQXW32KX30SfPbVw1C2UP2g32qwD36XhvA</recordid><startdate>20241022</startdate><enddate>20241022</enddate><creator>Lv, Siqi</creator><creator>Liang, Yujian</creator><creator>Zhang, Xuezhen</creator><creator>Tan, Xiaomei</creator><creator>Huang, Zuotan</creator><creator>Guan, Xuan</creator><creator>Liu, Chongmin</creator><creator>Tu, Zhihong</creator><general>MDPI AG</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope></search><sort><creationdate>20241022</creationdate><title>An Electrochemical Study of the Effect of Sulfate on the Surface Oxidation of Pyrite</title><author>Lv, Siqi ; Liang, Yujian ; Zhang, Xuezhen ; Tan, Xiaomei ; Huang, Zuotan ; Guan, Xuan ; Liu, Chongmin ; Tu, Zhihong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c279t-655be88b6380e26bd230b6c696c6d514f248c0b7855b4b8a556f449311c6465e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Acidic oxides</topic><topic>Analysis</topic><topic>Diffusion barriers</topic><topic>Diffusion rate</topic><topic>Electrochemical impedance spectroscopy</topic><topic>Electrochemistry</topic><topic>Electrode polarization</topic><topic>Electrodes</topic><topic>Electrolytes</topic><topic>Influence</topic><topic>Mine drainage</topic><topic>Oxidation</topic><topic>Oxidation rate</topic><topic>Oxidation resistance</topic><topic>Oxidation-reduction reaction</topic><topic>Precious metals</topic><topic>Pyrite</topic><topic>Sulfates</topic><topic>Sulfides</topic><topic>Surface chemistry</topic><topic>Surface reactions</topic><topic>Test systems</topic><topic>Voltammetry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lv, Siqi</creatorcontrib><creatorcontrib>Liang, Yujian</creatorcontrib><creatorcontrib>Zhang, Xuezhen</creatorcontrib><creatorcontrib>Tan, Xiaomei</creatorcontrib><creatorcontrib>Huang, Zuotan</creatorcontrib><creatorcontrib>Guan, Xuan</creatorcontrib><creatorcontrib>Liu, Chongmin</creatorcontrib><creatorcontrib>Tu, Zhihong</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><jtitle>Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lv, Siqi</au><au>Liang, Yujian</au><au>Zhang, Xuezhen</au><au>Tan, Xiaomei</au><au>Huang, Zuotan</au><au>Guan, Xuan</au><au>Liu, Chongmin</au><au>Tu, Zhihong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Electrochemical Study of the Effect of Sulfate on the Surface Oxidation of Pyrite</atitle><jtitle>Materials</jtitle><addtitle>Materials (Basel)</addtitle><date>2024-10-22</date><risdate>2024</risdate><volume>17</volume><issue>21</issue><spage>5145</spage><pages>5145-</pages><issn>1996-1944</issn><eissn>1996-1944</eissn><abstract>Pyrite is one of the most abundant metal sulfide tailings and is susceptible to oxidation, yielding acidic mine drainage (AMD) that poses significant environmental risks. Consequently, the exploration of pyrite surface oxidation and the kinetic influencing factors remains a pivotal research area. Despite the oxidation of pyrite producing a significant amount of sulfate (SO ), a comprehensive investigation into its influence on the oxidation process is lacking. Leveraging pyrite's semiconducting nature and the electrochemical intricacies of its surface oxidation, this study employs electrochemical techniques-cyclic voltammetry (CV), Tafel polarization, and electrochemical impedance spectroscopy (EIS)-to assess the effect of SO ⁻ on pyrite surface oxidation. The CV curve shows that SO does not change the fundamental surface oxidation mechanism of pyrite, but its redox peak current density decreases with the increase in SO , and the surface oxidation rate of pyrite decreases. The possible reason is attributed to SO adsorption onto pyrite surfaces, blocking active sites and impeding the oxidation process. Furthermore, Tafel polarization curves indicate an augmentation in polarization resistance with elevated SO concentrations, signifying heightened difficulty in pyrite surface reactions. EIS analysis underscores an increase in Weber diffusion resistance with increasing SO ⁻, indicating that the diffusion of Fe to the pyrite surface and the diffusion of oxidized products to the solution becomes more difficult. These findings will improve our understanding of the influence of SO on pyrite oxidation and have important implications for deepening the understanding of surface oxidation of pyrite in the natural environment.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>39517422</pmid><doi>10.3390/ma17215145</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1996-1944
ispartof Materials, 2024-10, Vol.17 (21), p.5145
issn 1996-1944
1996-1944
language eng
recordid cdi_proquest_miscellaneous_3128740452
source MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry; PubMed Central Open Access
subjects Acidic oxides
Analysis
Diffusion barriers
Diffusion rate
Electrochemical impedance spectroscopy
Electrochemistry
Electrode polarization
Electrodes
Electrolytes
Influence
Mine drainage
Oxidation
Oxidation rate
Oxidation resistance
Oxidation-reduction reaction
Precious metals
Pyrite
Sulfates
Sulfides
Surface chemistry
Surface reactions
Test systems
Voltammetry
title An Electrochemical Study of the Effect of Sulfate on the Surface Oxidation of Pyrite
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T10%3A35%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Electrochemical%20Study%20of%20the%20Effect%20of%20Sulfate%20on%20the%20Surface%20Oxidation%20of%20Pyrite&rft.jtitle=Materials&rft.au=Lv,%20Siqi&rft.date=2024-10-22&rft.volume=17&rft.issue=21&rft.spage=5145&rft.pages=5145-&rft.issn=1996-1944&rft.eissn=1996-1944&rft_id=info:doi/10.3390/ma17215145&rft_dat=%3Cgale_proqu%3EA815346338%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3126028340&rft_id=info:pmid/39517422&rft_galeid=A815346338&rfr_iscdi=true