An Electrochemical Study of the Effect of Sulfate on the Surface Oxidation of Pyrite
Pyrite is one of the most abundant metal sulfide tailings and is susceptible to oxidation, yielding acidic mine drainage (AMD) that poses significant environmental risks. Consequently, the exploration of pyrite surface oxidation and the kinetic influencing factors remains a pivotal research area. De...
Gespeichert in:
Veröffentlicht in: | Materials 2024-10, Vol.17 (21), p.5145 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 21 |
container_start_page | 5145 |
container_title | Materials |
container_volume | 17 |
creator | Lv, Siqi Liang, Yujian Zhang, Xuezhen Tan, Xiaomei Huang, Zuotan Guan, Xuan Liu, Chongmin Tu, Zhihong |
description | Pyrite is one of the most abundant metal sulfide tailings and is susceptible to oxidation, yielding acidic mine drainage (AMD) that poses significant environmental risks. Consequently, the exploration of pyrite surface oxidation and the kinetic influencing factors remains a pivotal research area. Despite the oxidation of pyrite producing a significant amount of sulfate (SO
), a comprehensive investigation into its influence on the oxidation process is lacking. Leveraging pyrite's semiconducting nature and the electrochemical intricacies of its surface oxidation, this study employs electrochemical techniques-cyclic voltammetry (CV), Tafel polarization, and electrochemical impedance spectroscopy (EIS)-to assess the effect of SO
⁻ on pyrite surface oxidation. The CV curve shows that SO
does not change the fundamental surface oxidation mechanism of pyrite, but its redox peak current density decreases with the increase in SO
, and the surface oxidation rate of pyrite decreases. The possible reason is attributed to SO
adsorption onto pyrite surfaces, blocking active sites and impeding the oxidation process. Furthermore, Tafel polarization curves indicate an augmentation in polarization resistance with elevated SO
concentrations, signifying heightened difficulty in pyrite surface reactions. EIS analysis underscores an increase in Weber diffusion resistance with increasing SO
⁻, indicating that the diffusion of Fe
to the pyrite surface and the diffusion of oxidized products to the solution becomes more difficult. These findings will improve our understanding of the influence of SO
on pyrite oxidation and have important implications for deepening the understanding of surface oxidation of pyrite in the natural environment. |
doi_str_mv | 10.3390/ma17215145 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_3128740452</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A815346338</galeid><sourcerecordid>A815346338</sourcerecordid><originalsourceid>FETCH-LOGICAL-c279t-655be88b6380e26bd230b6c696c6d514f248c0b7855b4b8a556f449311c6465e3</originalsourceid><addsrcrecordid>eNpdkdtKAzEQhoMoVrQ3PoAseCNCNedNLovUAwgVWq-XbHZiV3Y3NZsF-_am1hNmCJPMfBNm8iN0SvAVYxpft4bklAjCxR46IlrLCdGc7_85j9C4719xWowRRfUhGjEtSM4pPULLaZfNGrAxeLuCtramyRZxqDaZd1lcQTZzLmW3t8XQOBMh891nYjEEZyxk8_e6MrFO0cQ8bUId4QQdONP0MP7yx-j5dra8uZ88zu8ebqaPE0tzHSdSiBKUKiVTGKgsK8pwKa3UaVdpIke5srjMVeJ4qYwQ0nGuGSFWcimAHaOL3bvr4N8G6GPR1r2FpjEd-KEvGKEq55gLmtDzf-irH0KXuttSElPFOE7U1Y56MQ0Uded8DMYmq7Zf4ztwdYpPFRGMS8ZUKrjcFdjg-z6AK9ahbk3YFAQXW32KX30SfPbVw1C2UP2g32qwD36XhvA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3126028340</pqid></control><display><type>article</type><title>An Electrochemical Study of the Effect of Sulfate on the Surface Oxidation of Pyrite</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>PubMed Central Open Access</source><creator>Lv, Siqi ; Liang, Yujian ; Zhang, Xuezhen ; Tan, Xiaomei ; Huang, Zuotan ; Guan, Xuan ; Liu, Chongmin ; Tu, Zhihong</creator><creatorcontrib>Lv, Siqi ; Liang, Yujian ; Zhang, Xuezhen ; Tan, Xiaomei ; Huang, Zuotan ; Guan, Xuan ; Liu, Chongmin ; Tu, Zhihong</creatorcontrib><description>Pyrite is one of the most abundant metal sulfide tailings and is susceptible to oxidation, yielding acidic mine drainage (AMD) that poses significant environmental risks. Consequently, the exploration of pyrite surface oxidation and the kinetic influencing factors remains a pivotal research area. Despite the oxidation of pyrite producing a significant amount of sulfate (SO
), a comprehensive investigation into its influence on the oxidation process is lacking. Leveraging pyrite's semiconducting nature and the electrochemical intricacies of its surface oxidation, this study employs electrochemical techniques-cyclic voltammetry (CV), Tafel polarization, and electrochemical impedance spectroscopy (EIS)-to assess the effect of SO
⁻ on pyrite surface oxidation. The CV curve shows that SO
does not change the fundamental surface oxidation mechanism of pyrite, but its redox peak current density decreases with the increase in SO
, and the surface oxidation rate of pyrite decreases. The possible reason is attributed to SO
adsorption onto pyrite surfaces, blocking active sites and impeding the oxidation process. Furthermore, Tafel polarization curves indicate an augmentation in polarization resistance with elevated SO
concentrations, signifying heightened difficulty in pyrite surface reactions. EIS analysis underscores an increase in Weber diffusion resistance with increasing SO
⁻, indicating that the diffusion of Fe
to the pyrite surface and the diffusion of oxidized products to the solution becomes more difficult. These findings will improve our understanding of the influence of SO
on pyrite oxidation and have important implications for deepening the understanding of surface oxidation of pyrite in the natural environment.</description><identifier>ISSN: 1996-1944</identifier><identifier>EISSN: 1996-1944</identifier><identifier>DOI: 10.3390/ma17215145</identifier><identifier>PMID: 39517422</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Acidic oxides ; Analysis ; Diffusion barriers ; Diffusion rate ; Electrochemical impedance spectroscopy ; Electrochemistry ; Electrode polarization ; Electrodes ; Electrolytes ; Influence ; Mine drainage ; Oxidation ; Oxidation rate ; Oxidation resistance ; Oxidation-reduction reaction ; Precious metals ; Pyrite ; Sulfates ; Sulfides ; Surface chemistry ; Surface reactions ; Test systems ; Voltammetry</subject><ispartof>Materials, 2024-10, Vol.17 (21), p.5145</ispartof><rights>COPYRIGHT 2024 MDPI AG</rights><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c279t-655be88b6380e26bd230b6c696c6d514f248c0b7855b4b8a556f449311c6465e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39517422$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lv, Siqi</creatorcontrib><creatorcontrib>Liang, Yujian</creatorcontrib><creatorcontrib>Zhang, Xuezhen</creatorcontrib><creatorcontrib>Tan, Xiaomei</creatorcontrib><creatorcontrib>Huang, Zuotan</creatorcontrib><creatorcontrib>Guan, Xuan</creatorcontrib><creatorcontrib>Liu, Chongmin</creatorcontrib><creatorcontrib>Tu, Zhihong</creatorcontrib><title>An Electrochemical Study of the Effect of Sulfate on the Surface Oxidation of Pyrite</title><title>Materials</title><addtitle>Materials (Basel)</addtitle><description>Pyrite is one of the most abundant metal sulfide tailings and is susceptible to oxidation, yielding acidic mine drainage (AMD) that poses significant environmental risks. Consequently, the exploration of pyrite surface oxidation and the kinetic influencing factors remains a pivotal research area. Despite the oxidation of pyrite producing a significant amount of sulfate (SO
), a comprehensive investigation into its influence on the oxidation process is lacking. Leveraging pyrite's semiconducting nature and the electrochemical intricacies of its surface oxidation, this study employs electrochemical techniques-cyclic voltammetry (CV), Tafel polarization, and electrochemical impedance spectroscopy (EIS)-to assess the effect of SO
⁻ on pyrite surface oxidation. The CV curve shows that SO
does not change the fundamental surface oxidation mechanism of pyrite, but its redox peak current density decreases with the increase in SO
, and the surface oxidation rate of pyrite decreases. The possible reason is attributed to SO
adsorption onto pyrite surfaces, blocking active sites and impeding the oxidation process. Furthermore, Tafel polarization curves indicate an augmentation in polarization resistance with elevated SO
concentrations, signifying heightened difficulty in pyrite surface reactions. EIS analysis underscores an increase in Weber diffusion resistance with increasing SO
⁻, indicating that the diffusion of Fe
to the pyrite surface and the diffusion of oxidized products to the solution becomes more difficult. These findings will improve our understanding of the influence of SO
on pyrite oxidation and have important implications for deepening the understanding of surface oxidation of pyrite in the natural environment.</description><subject>Acidic oxides</subject><subject>Analysis</subject><subject>Diffusion barriers</subject><subject>Diffusion rate</subject><subject>Electrochemical impedance spectroscopy</subject><subject>Electrochemistry</subject><subject>Electrode polarization</subject><subject>Electrodes</subject><subject>Electrolytes</subject><subject>Influence</subject><subject>Mine drainage</subject><subject>Oxidation</subject><subject>Oxidation rate</subject><subject>Oxidation resistance</subject><subject>Oxidation-reduction reaction</subject><subject>Precious metals</subject><subject>Pyrite</subject><subject>Sulfates</subject><subject>Sulfides</subject><subject>Surface chemistry</subject><subject>Surface reactions</subject><subject>Test systems</subject><subject>Voltammetry</subject><issn>1996-1944</issn><issn>1996-1944</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpdkdtKAzEQhoMoVrQ3PoAseCNCNedNLovUAwgVWq-XbHZiV3Y3NZsF-_am1hNmCJPMfBNm8iN0SvAVYxpft4bklAjCxR46IlrLCdGc7_85j9C4719xWowRRfUhGjEtSM4pPULLaZfNGrAxeLuCtramyRZxqDaZd1lcQTZzLmW3t8XQOBMh891nYjEEZyxk8_e6MrFO0cQ8bUId4QQdONP0MP7yx-j5dra8uZ88zu8ebqaPE0tzHSdSiBKUKiVTGKgsK8pwKa3UaVdpIke5srjMVeJ4qYwQ0nGuGSFWcimAHaOL3bvr4N8G6GPR1r2FpjEd-KEvGKEq55gLmtDzf-irH0KXuttSElPFOE7U1Y56MQ0Uded8DMYmq7Zf4ztwdYpPFRGMS8ZUKrjcFdjg-z6AK9ahbk3YFAQXW32KX30SfPbVw1C2UP2g32qwD36XhvA</recordid><startdate>20241022</startdate><enddate>20241022</enddate><creator>Lv, Siqi</creator><creator>Liang, Yujian</creator><creator>Zhang, Xuezhen</creator><creator>Tan, Xiaomei</creator><creator>Huang, Zuotan</creator><creator>Guan, Xuan</creator><creator>Liu, Chongmin</creator><creator>Tu, Zhihong</creator><general>MDPI AG</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope></search><sort><creationdate>20241022</creationdate><title>An Electrochemical Study of the Effect of Sulfate on the Surface Oxidation of Pyrite</title><author>Lv, Siqi ; Liang, Yujian ; Zhang, Xuezhen ; Tan, Xiaomei ; Huang, Zuotan ; Guan, Xuan ; Liu, Chongmin ; Tu, Zhihong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c279t-655be88b6380e26bd230b6c696c6d514f248c0b7855b4b8a556f449311c6465e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Acidic oxides</topic><topic>Analysis</topic><topic>Diffusion barriers</topic><topic>Diffusion rate</topic><topic>Electrochemical impedance spectroscopy</topic><topic>Electrochemistry</topic><topic>Electrode polarization</topic><topic>Electrodes</topic><topic>Electrolytes</topic><topic>Influence</topic><topic>Mine drainage</topic><topic>Oxidation</topic><topic>Oxidation rate</topic><topic>Oxidation resistance</topic><topic>Oxidation-reduction reaction</topic><topic>Precious metals</topic><topic>Pyrite</topic><topic>Sulfates</topic><topic>Sulfides</topic><topic>Surface chemistry</topic><topic>Surface reactions</topic><topic>Test systems</topic><topic>Voltammetry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lv, Siqi</creatorcontrib><creatorcontrib>Liang, Yujian</creatorcontrib><creatorcontrib>Zhang, Xuezhen</creatorcontrib><creatorcontrib>Tan, Xiaomei</creatorcontrib><creatorcontrib>Huang, Zuotan</creatorcontrib><creatorcontrib>Guan, Xuan</creatorcontrib><creatorcontrib>Liu, Chongmin</creatorcontrib><creatorcontrib>Tu, Zhihong</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><jtitle>Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lv, Siqi</au><au>Liang, Yujian</au><au>Zhang, Xuezhen</au><au>Tan, Xiaomei</au><au>Huang, Zuotan</au><au>Guan, Xuan</au><au>Liu, Chongmin</au><au>Tu, Zhihong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Electrochemical Study of the Effect of Sulfate on the Surface Oxidation of Pyrite</atitle><jtitle>Materials</jtitle><addtitle>Materials (Basel)</addtitle><date>2024-10-22</date><risdate>2024</risdate><volume>17</volume><issue>21</issue><spage>5145</spage><pages>5145-</pages><issn>1996-1944</issn><eissn>1996-1944</eissn><abstract>Pyrite is one of the most abundant metal sulfide tailings and is susceptible to oxidation, yielding acidic mine drainage (AMD) that poses significant environmental risks. Consequently, the exploration of pyrite surface oxidation and the kinetic influencing factors remains a pivotal research area. Despite the oxidation of pyrite producing a significant amount of sulfate (SO
), a comprehensive investigation into its influence on the oxidation process is lacking. Leveraging pyrite's semiconducting nature and the electrochemical intricacies of its surface oxidation, this study employs electrochemical techniques-cyclic voltammetry (CV), Tafel polarization, and electrochemical impedance spectroscopy (EIS)-to assess the effect of SO
⁻ on pyrite surface oxidation. The CV curve shows that SO
does not change the fundamental surface oxidation mechanism of pyrite, but its redox peak current density decreases with the increase in SO
, and the surface oxidation rate of pyrite decreases. The possible reason is attributed to SO
adsorption onto pyrite surfaces, blocking active sites and impeding the oxidation process. Furthermore, Tafel polarization curves indicate an augmentation in polarization resistance with elevated SO
concentrations, signifying heightened difficulty in pyrite surface reactions. EIS analysis underscores an increase in Weber diffusion resistance with increasing SO
⁻, indicating that the diffusion of Fe
to the pyrite surface and the diffusion of oxidized products to the solution becomes more difficult. These findings will improve our understanding of the influence of SO
on pyrite oxidation and have important implications for deepening the understanding of surface oxidation of pyrite in the natural environment.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>39517422</pmid><doi>10.3390/ma17215145</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1996-1944 |
ispartof | Materials, 2024-10, Vol.17 (21), p.5145 |
issn | 1996-1944 1996-1944 |
language | eng |
recordid | cdi_proquest_miscellaneous_3128740452 |
source | MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry; PubMed Central Open Access |
subjects | Acidic oxides Analysis Diffusion barriers Diffusion rate Electrochemical impedance spectroscopy Electrochemistry Electrode polarization Electrodes Electrolytes Influence Mine drainage Oxidation Oxidation rate Oxidation resistance Oxidation-reduction reaction Precious metals Pyrite Sulfates Sulfides Surface chemistry Surface reactions Test systems Voltammetry |
title | An Electrochemical Study of the Effect of Sulfate on the Surface Oxidation of Pyrite |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T10%3A35%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Electrochemical%20Study%20of%20the%20Effect%20of%20Sulfate%20on%20the%20Surface%20Oxidation%20of%20Pyrite&rft.jtitle=Materials&rft.au=Lv,%20Siqi&rft.date=2024-10-22&rft.volume=17&rft.issue=21&rft.spage=5145&rft.pages=5145-&rft.issn=1996-1944&rft.eissn=1996-1944&rft_id=info:doi/10.3390/ma17215145&rft_dat=%3Cgale_proqu%3EA815346338%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3126028340&rft_id=info:pmid/39517422&rft_galeid=A815346338&rfr_iscdi=true |