A Multi-Scale Model for Predicting Physically Short Crack and Long Crack Behavior in Metals
The fatigue behavior of metal specimens is influenced by defects, material properties, and loading. This study aims to establish a multi-scale fatigue crack growth model that describes physically short crack (PSC) and long crack (LC) behavior. The model allows the calculation of crack growth rates f...
Gespeichert in:
Veröffentlicht in: | Materials 2024-10, Vol.17 (21), p.5163 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 21 |
container_start_page | 5163 |
container_title | Materials |
container_volume | 17 |
creator | Yang, Xing Zhang, Chunguo Wu, Panpan Xu, Anye Ju, Pengfei Yang, Dandan Dong, Zhonghong |
description | The fatigue behavior of metal specimens is influenced by defects, material properties, and loading. This study aims to establish a multi-scale fatigue crack growth model that describes physically short crack (PSC) and long crack (LC) behavior. The model allows the calculation of crack growth rates for uniaxial loading at different stress ratios based on the material properties and specimen geometry. Furthermore, the model integrates the Gaussian distribution theory to consider material heterogeneity and the experimental measurement errors that cause fatigue scatter. The crack growth rate and fatigue life of metal specimens with different notch geometry were predicted. The curves generated by the multi-scale model were mainly consistent with the test data from the published literature at the PSC and LC stages. |
doi_str_mv | 10.3390/ma17215163 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_3128740235</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A815346356</galeid><sourcerecordid>A815346356</sourcerecordid><originalsourceid>FETCH-LOGICAL-c279t-fe816fe3762d09db433eb16b67190b493b7edf6b796eaaff8cca5673416a4f413</originalsourceid><addsrcrecordid>eNpdkU1P3DAQhi1UBAi48AOQJS5VpYCdcez4uF21tNKuikQ5cYgcZ8yaJjHYSaX99xgt_RCew3g8z2uN_RJyxtklgGZXg-Gq5BWXsEeOuNay4FqID__tD8lpSo8sLwBel_qAHIKuuBJQH5H7BV3P_eSLW2t6pOvQYU9diPQmYuft5McHerPZJp_b_ZbebkKc6DIa-4uasaOrkPu78jNuzG-flX6ka5xMn07IvssJT9_yMbn7-uXn8lux-nH9fblYFbZUeioc1lw6BCXLjumuFQDYctlKxTVrhYZWYedkq7REY5yrrTWVVCC4NMIJDsfk4-7epxieZ0xTM_hkse_NiGFODfCyVoKVUGX04h36GOY45uleKcnKWpcsU5c76iH_SeNHF6b8xBwdDt6GEZ3P54uaVyAkVDILPu0ENoaUIrrmKfrBxG3DWfNqU_PPpgyfv80wtwN2f9E_psALcCSKZA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3126028920</pqid></control><display><type>article</type><title>A Multi-Scale Model for Predicting Physically Short Crack and Long Crack Behavior in Metals</title><source>PubMed Central Open Access</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Yang, Xing ; Zhang, Chunguo ; Wu, Panpan ; Xu, Anye ; Ju, Pengfei ; Yang, Dandan ; Dong, Zhonghong</creator><creatorcontrib>Yang, Xing ; Zhang, Chunguo ; Wu, Panpan ; Xu, Anye ; Ju, Pengfei ; Yang, Dandan ; Dong, Zhonghong</creatorcontrib><description>The fatigue behavior of metal specimens is influenced by defects, material properties, and loading. This study aims to establish a multi-scale fatigue crack growth model that describes physically short crack (PSC) and long crack (LC) behavior. The model allows the calculation of crack growth rates for uniaxial loading at different stress ratios based on the material properties and specimen geometry. Furthermore, the model integrates the Gaussian distribution theory to consider material heterogeneity and the experimental measurement errors that cause fatigue scatter. The crack growth rate and fatigue life of metal specimens with different notch geometry were predicted. The curves generated by the multi-scale model were mainly consistent with the test data from the published literature at the PSC and LC stages.</description><identifier>ISSN: 1996-1944</identifier><identifier>EISSN: 1996-1944</identifier><identifier>DOI: 10.3390/ma17215163</identifier><identifier>PMID: 39517438</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Crack propagation ; Curves ; Fatigue ; Fatigue cracks ; Fatigue failure ; Fatigue life ; Fatigue testing machines ; Fatigue tests ; Fracture mechanics ; Geometry ; Grain size ; Growth models ; Heterogeneity ; Investigations ; Load ; Material properties ; Materials ; Mechanical properties ; Metal fatigue ; Metal industry ; Metals ; Normal distribution ; Propagation ; Scale models ; Short cracks ; Specimen geometry ; Stress concentration ; Tensile strength ; Yield stress</subject><ispartof>Materials, 2024-10, Vol.17 (21), p.5163</ispartof><rights>COPYRIGHT 2024 MDPI AG</rights><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c279t-fe816fe3762d09db433eb16b67190b493b7edf6b796eaaff8cca5673416a4f413</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39517438$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yang, Xing</creatorcontrib><creatorcontrib>Zhang, Chunguo</creatorcontrib><creatorcontrib>Wu, Panpan</creatorcontrib><creatorcontrib>Xu, Anye</creatorcontrib><creatorcontrib>Ju, Pengfei</creatorcontrib><creatorcontrib>Yang, Dandan</creatorcontrib><creatorcontrib>Dong, Zhonghong</creatorcontrib><title>A Multi-Scale Model for Predicting Physically Short Crack and Long Crack Behavior in Metals</title><title>Materials</title><addtitle>Materials (Basel)</addtitle><description>The fatigue behavior of metal specimens is influenced by defects, material properties, and loading. This study aims to establish a multi-scale fatigue crack growth model that describes physically short crack (PSC) and long crack (LC) behavior. The model allows the calculation of crack growth rates for uniaxial loading at different stress ratios based on the material properties and specimen geometry. Furthermore, the model integrates the Gaussian distribution theory to consider material heterogeneity and the experimental measurement errors that cause fatigue scatter. The crack growth rate and fatigue life of metal specimens with different notch geometry were predicted. The curves generated by the multi-scale model were mainly consistent with the test data from the published literature at the PSC and LC stages.</description><subject>Crack propagation</subject><subject>Curves</subject><subject>Fatigue</subject><subject>Fatigue cracks</subject><subject>Fatigue failure</subject><subject>Fatigue life</subject><subject>Fatigue testing machines</subject><subject>Fatigue tests</subject><subject>Fracture mechanics</subject><subject>Geometry</subject><subject>Grain size</subject><subject>Growth models</subject><subject>Heterogeneity</subject><subject>Investigations</subject><subject>Load</subject><subject>Material properties</subject><subject>Materials</subject><subject>Mechanical properties</subject><subject>Metal fatigue</subject><subject>Metal industry</subject><subject>Metals</subject><subject>Normal distribution</subject><subject>Propagation</subject><subject>Scale models</subject><subject>Short cracks</subject><subject>Specimen geometry</subject><subject>Stress concentration</subject><subject>Tensile strength</subject><subject>Yield stress</subject><issn>1996-1944</issn><issn>1996-1944</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpdkU1P3DAQhi1UBAi48AOQJS5VpYCdcez4uF21tNKuikQ5cYgcZ8yaJjHYSaX99xgt_RCew3g8z2uN_RJyxtklgGZXg-Gq5BWXsEeOuNay4FqID__tD8lpSo8sLwBel_qAHIKuuBJQH5H7BV3P_eSLW2t6pOvQYU9diPQmYuft5McHerPZJp_b_ZbebkKc6DIa-4uasaOrkPu78jNuzG-flX6ka5xMn07IvssJT9_yMbn7-uXn8lux-nH9fblYFbZUeioc1lw6BCXLjumuFQDYctlKxTVrhYZWYedkq7REY5yrrTWVVCC4NMIJDsfk4-7epxieZ0xTM_hkse_NiGFODfCyVoKVUGX04h36GOY45uleKcnKWpcsU5c76iH_SeNHF6b8xBwdDt6GEZ3P54uaVyAkVDILPu0ENoaUIrrmKfrBxG3DWfNqU_PPpgyfv80wtwN2f9E_psALcCSKZA</recordid><startdate>20241023</startdate><enddate>20241023</enddate><creator>Yang, Xing</creator><creator>Zhang, Chunguo</creator><creator>Wu, Panpan</creator><creator>Xu, Anye</creator><creator>Ju, Pengfei</creator><creator>Yang, Dandan</creator><creator>Dong, Zhonghong</creator><general>MDPI AG</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope></search><sort><creationdate>20241023</creationdate><title>A Multi-Scale Model for Predicting Physically Short Crack and Long Crack Behavior in Metals</title><author>Yang, Xing ; Zhang, Chunguo ; Wu, Panpan ; Xu, Anye ; Ju, Pengfei ; Yang, Dandan ; Dong, Zhonghong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c279t-fe816fe3762d09db433eb16b67190b493b7edf6b796eaaff8cca5673416a4f413</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Crack propagation</topic><topic>Curves</topic><topic>Fatigue</topic><topic>Fatigue cracks</topic><topic>Fatigue failure</topic><topic>Fatigue life</topic><topic>Fatigue testing machines</topic><topic>Fatigue tests</topic><topic>Fracture mechanics</topic><topic>Geometry</topic><topic>Grain size</topic><topic>Growth models</topic><topic>Heterogeneity</topic><topic>Investigations</topic><topic>Load</topic><topic>Material properties</topic><topic>Materials</topic><topic>Mechanical properties</topic><topic>Metal fatigue</topic><topic>Metal industry</topic><topic>Metals</topic><topic>Normal distribution</topic><topic>Propagation</topic><topic>Scale models</topic><topic>Short cracks</topic><topic>Specimen geometry</topic><topic>Stress concentration</topic><topic>Tensile strength</topic><topic>Yield stress</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Xing</creatorcontrib><creatorcontrib>Zhang, Chunguo</creatorcontrib><creatorcontrib>Wu, Panpan</creatorcontrib><creatorcontrib>Xu, Anye</creatorcontrib><creatorcontrib>Ju, Pengfei</creatorcontrib><creatorcontrib>Yang, Dandan</creatorcontrib><creatorcontrib>Dong, Zhonghong</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><jtitle>Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Xing</au><au>Zhang, Chunguo</au><au>Wu, Panpan</au><au>Xu, Anye</au><au>Ju, Pengfei</au><au>Yang, Dandan</au><au>Dong, Zhonghong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Multi-Scale Model for Predicting Physically Short Crack and Long Crack Behavior in Metals</atitle><jtitle>Materials</jtitle><addtitle>Materials (Basel)</addtitle><date>2024-10-23</date><risdate>2024</risdate><volume>17</volume><issue>21</issue><spage>5163</spage><pages>5163-</pages><issn>1996-1944</issn><eissn>1996-1944</eissn><abstract>The fatigue behavior of metal specimens is influenced by defects, material properties, and loading. This study aims to establish a multi-scale fatigue crack growth model that describes physically short crack (PSC) and long crack (LC) behavior. The model allows the calculation of crack growth rates for uniaxial loading at different stress ratios based on the material properties and specimen geometry. Furthermore, the model integrates the Gaussian distribution theory to consider material heterogeneity and the experimental measurement errors that cause fatigue scatter. The crack growth rate and fatigue life of metal specimens with different notch geometry were predicted. The curves generated by the multi-scale model were mainly consistent with the test data from the published literature at the PSC and LC stages.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>39517438</pmid><doi>10.3390/ma17215163</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1996-1944 |
ispartof | Materials, 2024-10, Vol.17 (21), p.5163 |
issn | 1996-1944 1996-1944 |
language | eng |
recordid | cdi_proquest_miscellaneous_3128740235 |
source | PubMed Central Open Access; MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Crack propagation Curves Fatigue Fatigue cracks Fatigue failure Fatigue life Fatigue testing machines Fatigue tests Fracture mechanics Geometry Grain size Growth models Heterogeneity Investigations Load Material properties Materials Mechanical properties Metal fatigue Metal industry Metals Normal distribution Propagation Scale models Short cracks Specimen geometry Stress concentration Tensile strength Yield stress |
title | A Multi-Scale Model for Predicting Physically Short Crack and Long Crack Behavior in Metals |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T01%3A12%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Multi-Scale%20Model%20for%20Predicting%20Physically%20Short%20Crack%20and%20Long%20Crack%20Behavior%20in%20Metals&rft.jtitle=Materials&rft.au=Yang,%20Xing&rft.date=2024-10-23&rft.volume=17&rft.issue=21&rft.spage=5163&rft.pages=5163-&rft.issn=1996-1944&rft.eissn=1996-1944&rft_id=info:doi/10.3390/ma17215163&rft_dat=%3Cgale_proqu%3EA815346356%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3126028920&rft_id=info:pmid/39517438&rft_galeid=A815346356&rfr_iscdi=true |