A Multi-Scale Model for Predicting Physically Short Crack and Long Crack Behavior in Metals

The fatigue behavior of metal specimens is influenced by defects, material properties, and loading. This study aims to establish a multi-scale fatigue crack growth model that describes physically short crack (PSC) and long crack (LC) behavior. The model allows the calculation of crack growth rates f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials 2024-10, Vol.17 (21), p.5163
Hauptverfasser: Yang, Xing, Zhang, Chunguo, Wu, Panpan, Xu, Anye, Ju, Pengfei, Yang, Dandan, Dong, Zhonghong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 21
container_start_page 5163
container_title Materials
container_volume 17
creator Yang, Xing
Zhang, Chunguo
Wu, Panpan
Xu, Anye
Ju, Pengfei
Yang, Dandan
Dong, Zhonghong
description The fatigue behavior of metal specimens is influenced by defects, material properties, and loading. This study aims to establish a multi-scale fatigue crack growth model that describes physically short crack (PSC) and long crack (LC) behavior. The model allows the calculation of crack growth rates for uniaxial loading at different stress ratios based on the material properties and specimen geometry. Furthermore, the model integrates the Gaussian distribution theory to consider material heterogeneity and the experimental measurement errors that cause fatigue scatter. The crack growth rate and fatigue life of metal specimens with different notch geometry were predicted. The curves generated by the multi-scale model were mainly consistent with the test data from the published literature at the PSC and LC stages.
doi_str_mv 10.3390/ma17215163
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_3128740235</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A815346356</galeid><sourcerecordid>A815346356</sourcerecordid><originalsourceid>FETCH-LOGICAL-c279t-fe816fe3762d09db433eb16b67190b493b7edf6b796eaaff8cca5673416a4f413</originalsourceid><addsrcrecordid>eNpdkU1P3DAQhi1UBAi48AOQJS5VpYCdcez4uF21tNKuikQ5cYgcZ8yaJjHYSaX99xgt_RCew3g8z2uN_RJyxtklgGZXg-Gq5BWXsEeOuNay4FqID__tD8lpSo8sLwBel_qAHIKuuBJQH5H7BV3P_eSLW2t6pOvQYU9diPQmYuft5McHerPZJp_b_ZbebkKc6DIa-4uasaOrkPu78jNuzG-flX6ka5xMn07IvssJT9_yMbn7-uXn8lux-nH9fblYFbZUeioc1lw6BCXLjumuFQDYctlKxTVrhYZWYedkq7REY5yrrTWVVCC4NMIJDsfk4-7epxieZ0xTM_hkse_NiGFODfCyVoKVUGX04h36GOY45uleKcnKWpcsU5c76iH_SeNHF6b8xBwdDt6GEZ3P54uaVyAkVDILPu0ENoaUIrrmKfrBxG3DWfNqU_PPpgyfv80wtwN2f9E_psALcCSKZA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3126028920</pqid></control><display><type>article</type><title>A Multi-Scale Model for Predicting Physically Short Crack and Long Crack Behavior in Metals</title><source>PubMed Central Open Access</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Yang, Xing ; Zhang, Chunguo ; Wu, Panpan ; Xu, Anye ; Ju, Pengfei ; Yang, Dandan ; Dong, Zhonghong</creator><creatorcontrib>Yang, Xing ; Zhang, Chunguo ; Wu, Panpan ; Xu, Anye ; Ju, Pengfei ; Yang, Dandan ; Dong, Zhonghong</creatorcontrib><description>The fatigue behavior of metal specimens is influenced by defects, material properties, and loading. This study aims to establish a multi-scale fatigue crack growth model that describes physically short crack (PSC) and long crack (LC) behavior. The model allows the calculation of crack growth rates for uniaxial loading at different stress ratios based on the material properties and specimen geometry. Furthermore, the model integrates the Gaussian distribution theory to consider material heterogeneity and the experimental measurement errors that cause fatigue scatter. The crack growth rate and fatigue life of metal specimens with different notch geometry were predicted. The curves generated by the multi-scale model were mainly consistent with the test data from the published literature at the PSC and LC stages.</description><identifier>ISSN: 1996-1944</identifier><identifier>EISSN: 1996-1944</identifier><identifier>DOI: 10.3390/ma17215163</identifier><identifier>PMID: 39517438</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Crack propagation ; Curves ; Fatigue ; Fatigue cracks ; Fatigue failure ; Fatigue life ; Fatigue testing machines ; Fatigue tests ; Fracture mechanics ; Geometry ; Grain size ; Growth models ; Heterogeneity ; Investigations ; Load ; Material properties ; Materials ; Mechanical properties ; Metal fatigue ; Metal industry ; Metals ; Normal distribution ; Propagation ; Scale models ; Short cracks ; Specimen geometry ; Stress concentration ; Tensile strength ; Yield stress</subject><ispartof>Materials, 2024-10, Vol.17 (21), p.5163</ispartof><rights>COPYRIGHT 2024 MDPI AG</rights><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c279t-fe816fe3762d09db433eb16b67190b493b7edf6b796eaaff8cca5673416a4f413</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39517438$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yang, Xing</creatorcontrib><creatorcontrib>Zhang, Chunguo</creatorcontrib><creatorcontrib>Wu, Panpan</creatorcontrib><creatorcontrib>Xu, Anye</creatorcontrib><creatorcontrib>Ju, Pengfei</creatorcontrib><creatorcontrib>Yang, Dandan</creatorcontrib><creatorcontrib>Dong, Zhonghong</creatorcontrib><title>A Multi-Scale Model for Predicting Physically Short Crack and Long Crack Behavior in Metals</title><title>Materials</title><addtitle>Materials (Basel)</addtitle><description>The fatigue behavior of metal specimens is influenced by defects, material properties, and loading. This study aims to establish a multi-scale fatigue crack growth model that describes physically short crack (PSC) and long crack (LC) behavior. The model allows the calculation of crack growth rates for uniaxial loading at different stress ratios based on the material properties and specimen geometry. Furthermore, the model integrates the Gaussian distribution theory to consider material heterogeneity and the experimental measurement errors that cause fatigue scatter. The crack growth rate and fatigue life of metal specimens with different notch geometry were predicted. The curves generated by the multi-scale model were mainly consistent with the test data from the published literature at the PSC and LC stages.</description><subject>Crack propagation</subject><subject>Curves</subject><subject>Fatigue</subject><subject>Fatigue cracks</subject><subject>Fatigue failure</subject><subject>Fatigue life</subject><subject>Fatigue testing machines</subject><subject>Fatigue tests</subject><subject>Fracture mechanics</subject><subject>Geometry</subject><subject>Grain size</subject><subject>Growth models</subject><subject>Heterogeneity</subject><subject>Investigations</subject><subject>Load</subject><subject>Material properties</subject><subject>Materials</subject><subject>Mechanical properties</subject><subject>Metal fatigue</subject><subject>Metal industry</subject><subject>Metals</subject><subject>Normal distribution</subject><subject>Propagation</subject><subject>Scale models</subject><subject>Short cracks</subject><subject>Specimen geometry</subject><subject>Stress concentration</subject><subject>Tensile strength</subject><subject>Yield stress</subject><issn>1996-1944</issn><issn>1996-1944</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpdkU1P3DAQhi1UBAi48AOQJS5VpYCdcez4uF21tNKuikQ5cYgcZ8yaJjHYSaX99xgt_RCew3g8z2uN_RJyxtklgGZXg-Gq5BWXsEeOuNay4FqID__tD8lpSo8sLwBel_qAHIKuuBJQH5H7BV3P_eSLW2t6pOvQYU9diPQmYuft5McHerPZJp_b_ZbebkKc6DIa-4uasaOrkPu78jNuzG-flX6ka5xMn07IvssJT9_yMbn7-uXn8lux-nH9fblYFbZUeioc1lw6BCXLjumuFQDYctlKxTVrhYZWYedkq7REY5yrrTWVVCC4NMIJDsfk4-7epxieZ0xTM_hkse_NiGFODfCyVoKVUGX04h36GOY45uleKcnKWpcsU5c76iH_SeNHF6b8xBwdDt6GEZ3P54uaVyAkVDILPu0ENoaUIrrmKfrBxG3DWfNqU_PPpgyfv80wtwN2f9E_psALcCSKZA</recordid><startdate>20241023</startdate><enddate>20241023</enddate><creator>Yang, Xing</creator><creator>Zhang, Chunguo</creator><creator>Wu, Panpan</creator><creator>Xu, Anye</creator><creator>Ju, Pengfei</creator><creator>Yang, Dandan</creator><creator>Dong, Zhonghong</creator><general>MDPI AG</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope></search><sort><creationdate>20241023</creationdate><title>A Multi-Scale Model for Predicting Physically Short Crack and Long Crack Behavior in Metals</title><author>Yang, Xing ; Zhang, Chunguo ; Wu, Panpan ; Xu, Anye ; Ju, Pengfei ; Yang, Dandan ; Dong, Zhonghong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c279t-fe816fe3762d09db433eb16b67190b493b7edf6b796eaaff8cca5673416a4f413</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Crack propagation</topic><topic>Curves</topic><topic>Fatigue</topic><topic>Fatigue cracks</topic><topic>Fatigue failure</topic><topic>Fatigue life</topic><topic>Fatigue testing machines</topic><topic>Fatigue tests</topic><topic>Fracture mechanics</topic><topic>Geometry</topic><topic>Grain size</topic><topic>Growth models</topic><topic>Heterogeneity</topic><topic>Investigations</topic><topic>Load</topic><topic>Material properties</topic><topic>Materials</topic><topic>Mechanical properties</topic><topic>Metal fatigue</topic><topic>Metal industry</topic><topic>Metals</topic><topic>Normal distribution</topic><topic>Propagation</topic><topic>Scale models</topic><topic>Short cracks</topic><topic>Specimen geometry</topic><topic>Stress concentration</topic><topic>Tensile strength</topic><topic>Yield stress</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Xing</creatorcontrib><creatorcontrib>Zhang, Chunguo</creatorcontrib><creatorcontrib>Wu, Panpan</creatorcontrib><creatorcontrib>Xu, Anye</creatorcontrib><creatorcontrib>Ju, Pengfei</creatorcontrib><creatorcontrib>Yang, Dandan</creatorcontrib><creatorcontrib>Dong, Zhonghong</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><jtitle>Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Xing</au><au>Zhang, Chunguo</au><au>Wu, Panpan</au><au>Xu, Anye</au><au>Ju, Pengfei</au><au>Yang, Dandan</au><au>Dong, Zhonghong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Multi-Scale Model for Predicting Physically Short Crack and Long Crack Behavior in Metals</atitle><jtitle>Materials</jtitle><addtitle>Materials (Basel)</addtitle><date>2024-10-23</date><risdate>2024</risdate><volume>17</volume><issue>21</issue><spage>5163</spage><pages>5163-</pages><issn>1996-1944</issn><eissn>1996-1944</eissn><abstract>The fatigue behavior of metal specimens is influenced by defects, material properties, and loading. This study aims to establish a multi-scale fatigue crack growth model that describes physically short crack (PSC) and long crack (LC) behavior. The model allows the calculation of crack growth rates for uniaxial loading at different stress ratios based on the material properties and specimen geometry. Furthermore, the model integrates the Gaussian distribution theory to consider material heterogeneity and the experimental measurement errors that cause fatigue scatter. The crack growth rate and fatigue life of metal specimens with different notch geometry were predicted. The curves generated by the multi-scale model were mainly consistent with the test data from the published literature at the PSC and LC stages.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>39517438</pmid><doi>10.3390/ma17215163</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1996-1944
ispartof Materials, 2024-10, Vol.17 (21), p.5163
issn 1996-1944
1996-1944
language eng
recordid cdi_proquest_miscellaneous_3128740235
source PubMed Central Open Access; MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry
subjects Crack propagation
Curves
Fatigue
Fatigue cracks
Fatigue failure
Fatigue life
Fatigue testing machines
Fatigue tests
Fracture mechanics
Geometry
Grain size
Growth models
Heterogeneity
Investigations
Load
Material properties
Materials
Mechanical properties
Metal fatigue
Metal industry
Metals
Normal distribution
Propagation
Scale models
Short cracks
Specimen geometry
Stress concentration
Tensile strength
Yield stress
title A Multi-Scale Model for Predicting Physically Short Crack and Long Crack Behavior in Metals
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T01%3A12%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Multi-Scale%20Model%20for%20Predicting%20Physically%20Short%20Crack%20and%20Long%20Crack%20Behavior%20in%20Metals&rft.jtitle=Materials&rft.au=Yang,%20Xing&rft.date=2024-10-23&rft.volume=17&rft.issue=21&rft.spage=5163&rft.pages=5163-&rft.issn=1996-1944&rft.eissn=1996-1944&rft_id=info:doi/10.3390/ma17215163&rft_dat=%3Cgale_proqu%3EA815346356%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3126028920&rft_id=info:pmid/39517438&rft_galeid=A815346356&rfr_iscdi=true