Fatigue Life Prediction of 2024-T3 Al Alloy by Integrating Particle Swarm Optimization-Extreme Gradient Boosting and Physical Model

The multi-parameter characteristics of the physical model pose a challenge to the fatigue life prediction of 2024-T3 aluminum (Al) alloy. In response to this issue, a parameter-solving method that integrates particle swarm optimization (PSO) with extreme gradient boosting (XGBoost) is proposed in th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials 2024-10, Vol.17 (21), p.5332
Hauptverfasser: Li, Zhaoji, Yue, Haitao, Zhang, Ce, Dai, Weibing, Guo, Chenguang, Li, Qiang, Zhang, Jianzhuo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 21
container_start_page 5332
container_title Materials
container_volume 17
creator Li, Zhaoji
Yue, Haitao
Zhang, Ce
Dai, Weibing
Guo, Chenguang
Li, Qiang
Zhang, Jianzhuo
description The multi-parameter characteristics of the physical model pose a challenge to the fatigue life prediction of 2024-T3 aluminum (Al) alloy. In response to this issue, a parameter-solving method that integrates particle swarm optimization (PSO) with extreme gradient boosting (XGBoost) is proposed in this study. The fatigue performance and failure mechanism of the 2024-T3 Al alloy are analyzed. Furthermore, the fatigue life prediction physical model of the 2024-T3 Al alloy is established by using the energy method of fracture mechanics. The physical model incorporates critical physical parameters. Meanwhile, the PSO algorithm optimizes the hyperparameters of the XGBoost model based on fatigue data of the 2024-T3 Al alloy. Eventually, the optimized XGBoost model is used to solve the parameters of the physical model. Furthermore, the analytical equation of the fatigue life prediction model is obtained. This paper provides a new method for solving the parameters of the fatigue life prediction model, which reduces the error and cost of obtaining the model parameters in the experiment and shortens the time required.
doi_str_mv 10.3390/ma17215332
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_3128740132</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A815420291</galeid><sourcerecordid>A815420291</sourcerecordid><originalsourceid>FETCH-LOGICAL-c243t-37c8b7a509c6073953384bbb67e5259d114afadbca56cc4cc729bf2e36b43f033</originalsourceid><addsrcrecordid>eNpdkV1rHCEUhqW0NCHNTX9AEXpTCpP4NR9ebkOSBjZkoen1oM5xa3DGrTqkm9v88brdtA1RQZHnkXN8EXpPyQnnkpyOiraM1pyzV-iQStlUVArx-tn5AB2ndEfK4Jx2TL5FB1zWtG1IfYgeL1R26xnw0lnAqwiDM9mFCQeLGWGiuuV44cvyYYv1Fl9NGdaxONMar1TMznjA3-5VHPHNJrvRPaidXp3_yhFGwJdRDQ6mjL-EkP5Yahrw6sc2OaM8vg4D-HfojVU-wfHTfoS-X5zfnn2tljeXV2eLZWWY4Lnirel0q2oiTUPa0gLnndBaNy3UrJYDpUJZNWij6sYYYUzLpLYMeKMFt6X5I_Rp_-4mhp8zpNyPLhnwXk0Q5tRzyrpWEMpZQT--QO_CHKdS3Y5qCGu6Zked7Km18tC7yYYclSlzgNGZMIF15X7R0VqUv5S0CJ_3gokhpQi230Q3qrjtKel3cfb_4yzwh6caZj3C8A_9Gx7_DeLTmIg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3126026862</pqid></control><display><type>article</type><title>Fatigue Life Prediction of 2024-T3 Al Alloy by Integrating Particle Swarm Optimization-Extreme Gradient Boosting and Physical Model</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>PubMed Central Open Access</source><creator>Li, Zhaoji ; Yue, Haitao ; Zhang, Ce ; Dai, Weibing ; Guo, Chenguang ; Li, Qiang ; Zhang, Jianzhuo</creator><creatorcontrib>Li, Zhaoji ; Yue, Haitao ; Zhang, Ce ; Dai, Weibing ; Guo, Chenguang ; Li, Qiang ; Zhang, Jianzhuo</creatorcontrib><description>The multi-parameter characteristics of the physical model pose a challenge to the fatigue life prediction of 2024-T3 aluminum (Al) alloy. In response to this issue, a parameter-solving method that integrates particle swarm optimization (PSO) with extreme gradient boosting (XGBoost) is proposed in this study. The fatigue performance and failure mechanism of the 2024-T3 Al alloy are analyzed. Furthermore, the fatigue life prediction physical model of the 2024-T3 Al alloy is established by using the energy method of fracture mechanics. The physical model incorporates critical physical parameters. Meanwhile, the PSO algorithm optimizes the hyperparameters of the XGBoost model based on fatigue data of the 2024-T3 Al alloy. Eventually, the optimized XGBoost model is used to solve the parameters of the physical model. Furthermore, the analytical equation of the fatigue life prediction model is obtained. This paper provides a new method for solving the parameters of the fatigue life prediction model, which reduces the error and cost of obtaining the model parameters in the experiment and shortens the time required.</description><identifier>ISSN: 1996-1944</identifier><identifier>EISSN: 1996-1944</identifier><identifier>DOI: 10.3390/ma17215332</identifier><identifier>PMID: 39517605</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Accuracy ; Algorithms ; Alloys ; Aluminum alloys ; Aluminum base alloys ; Analysis ; Crack initiation ; Crack propagation ; Energy methods ; Error analysis ; Failure mechanisms ; Fatigue ; Fatigue failure ; Fatigue life ; Fatigue testing machines ; Fracture mechanics ; Hydraulics ; Life prediction ; Machine learning ; Materials ; Mathematical optimization ; Metal fatigue ; Parameters ; Particle swarm optimization ; Physical properties ; Prediction models ; Research methodology ; Specialty metals industry ; Stress concentration</subject><ispartof>Materials, 2024-10, Vol.17 (21), p.5332</ispartof><rights>COPYRIGHT 2024 MDPI AG</rights><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c243t-37c8b7a509c6073953384bbb67e5259d114afadbca56cc4cc729bf2e36b43f033</cites><orcidid>0000-0002-0900-5647 ; 0000-0002-0834-5287</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39517605$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Zhaoji</creatorcontrib><creatorcontrib>Yue, Haitao</creatorcontrib><creatorcontrib>Zhang, Ce</creatorcontrib><creatorcontrib>Dai, Weibing</creatorcontrib><creatorcontrib>Guo, Chenguang</creatorcontrib><creatorcontrib>Li, Qiang</creatorcontrib><creatorcontrib>Zhang, Jianzhuo</creatorcontrib><title>Fatigue Life Prediction of 2024-T3 Al Alloy by Integrating Particle Swarm Optimization-Extreme Gradient Boosting and Physical Model</title><title>Materials</title><addtitle>Materials (Basel)</addtitle><description>The multi-parameter characteristics of the physical model pose a challenge to the fatigue life prediction of 2024-T3 aluminum (Al) alloy. In response to this issue, a parameter-solving method that integrates particle swarm optimization (PSO) with extreme gradient boosting (XGBoost) is proposed in this study. The fatigue performance and failure mechanism of the 2024-T3 Al alloy are analyzed. Furthermore, the fatigue life prediction physical model of the 2024-T3 Al alloy is established by using the energy method of fracture mechanics. The physical model incorporates critical physical parameters. Meanwhile, the PSO algorithm optimizes the hyperparameters of the XGBoost model based on fatigue data of the 2024-T3 Al alloy. Eventually, the optimized XGBoost model is used to solve the parameters of the physical model. Furthermore, the analytical equation of the fatigue life prediction model is obtained. This paper provides a new method for solving the parameters of the fatigue life prediction model, which reduces the error and cost of obtaining the model parameters in the experiment and shortens the time required.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Alloys</subject><subject>Aluminum alloys</subject><subject>Aluminum base alloys</subject><subject>Analysis</subject><subject>Crack initiation</subject><subject>Crack propagation</subject><subject>Energy methods</subject><subject>Error analysis</subject><subject>Failure mechanisms</subject><subject>Fatigue</subject><subject>Fatigue failure</subject><subject>Fatigue life</subject><subject>Fatigue testing machines</subject><subject>Fracture mechanics</subject><subject>Hydraulics</subject><subject>Life prediction</subject><subject>Machine learning</subject><subject>Materials</subject><subject>Mathematical optimization</subject><subject>Metal fatigue</subject><subject>Parameters</subject><subject>Particle swarm optimization</subject><subject>Physical properties</subject><subject>Prediction models</subject><subject>Research methodology</subject><subject>Specialty metals industry</subject><subject>Stress concentration</subject><issn>1996-1944</issn><issn>1996-1944</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpdkV1rHCEUhqW0NCHNTX9AEXpTCpP4NR9ebkOSBjZkoen1oM5xa3DGrTqkm9v88brdtA1RQZHnkXN8EXpPyQnnkpyOiraM1pyzV-iQStlUVArx-tn5AB2ndEfK4Jx2TL5FB1zWtG1IfYgeL1R26xnw0lnAqwiDM9mFCQeLGWGiuuV44cvyYYv1Fl9NGdaxONMar1TMznjA3-5VHPHNJrvRPaidXp3_yhFGwJdRDQ6mjL-EkP5Yahrw6sc2OaM8vg4D-HfojVU-wfHTfoS-X5zfnn2tljeXV2eLZWWY4Lnirel0q2oiTUPa0gLnndBaNy3UrJYDpUJZNWij6sYYYUzLpLYMeKMFt6X5I_Rp_-4mhp8zpNyPLhnwXk0Q5tRzyrpWEMpZQT--QO_CHKdS3Y5qCGu6Zked7Km18tC7yYYclSlzgNGZMIF15X7R0VqUv5S0CJ_3gokhpQi230Q3qrjtKel3cfb_4yzwh6caZj3C8A_9Gx7_DeLTmIg</recordid><startdate>20241031</startdate><enddate>20241031</enddate><creator>Li, Zhaoji</creator><creator>Yue, Haitao</creator><creator>Zhang, Ce</creator><creator>Dai, Weibing</creator><creator>Guo, Chenguang</creator><creator>Li, Qiang</creator><creator>Zhang, Jianzhuo</creator><general>MDPI AG</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-0900-5647</orcidid><orcidid>https://orcid.org/0000-0002-0834-5287</orcidid></search><sort><creationdate>20241031</creationdate><title>Fatigue Life Prediction of 2024-T3 Al Alloy by Integrating Particle Swarm Optimization-Extreme Gradient Boosting and Physical Model</title><author>Li, Zhaoji ; Yue, Haitao ; Zhang, Ce ; Dai, Weibing ; Guo, Chenguang ; Li, Qiang ; Zhang, Jianzhuo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c243t-37c8b7a509c6073953384bbb67e5259d114afadbca56cc4cc729bf2e36b43f033</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Alloys</topic><topic>Aluminum alloys</topic><topic>Aluminum base alloys</topic><topic>Analysis</topic><topic>Crack initiation</topic><topic>Crack propagation</topic><topic>Energy methods</topic><topic>Error analysis</topic><topic>Failure mechanisms</topic><topic>Fatigue</topic><topic>Fatigue failure</topic><topic>Fatigue life</topic><topic>Fatigue testing machines</topic><topic>Fracture mechanics</topic><topic>Hydraulics</topic><topic>Life prediction</topic><topic>Machine learning</topic><topic>Materials</topic><topic>Mathematical optimization</topic><topic>Metal fatigue</topic><topic>Parameters</topic><topic>Particle swarm optimization</topic><topic>Physical properties</topic><topic>Prediction models</topic><topic>Research methodology</topic><topic>Specialty metals industry</topic><topic>Stress concentration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Zhaoji</creatorcontrib><creatorcontrib>Yue, Haitao</creatorcontrib><creatorcontrib>Zhang, Ce</creatorcontrib><creatorcontrib>Dai, Weibing</creatorcontrib><creatorcontrib>Guo, Chenguang</creatorcontrib><creatorcontrib>Li, Qiang</creatorcontrib><creatorcontrib>Zhang, Jianzhuo</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><jtitle>Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Zhaoji</au><au>Yue, Haitao</au><au>Zhang, Ce</au><au>Dai, Weibing</au><au>Guo, Chenguang</au><au>Li, Qiang</au><au>Zhang, Jianzhuo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fatigue Life Prediction of 2024-T3 Al Alloy by Integrating Particle Swarm Optimization-Extreme Gradient Boosting and Physical Model</atitle><jtitle>Materials</jtitle><addtitle>Materials (Basel)</addtitle><date>2024-10-31</date><risdate>2024</risdate><volume>17</volume><issue>21</issue><spage>5332</spage><pages>5332-</pages><issn>1996-1944</issn><eissn>1996-1944</eissn><abstract>The multi-parameter characteristics of the physical model pose a challenge to the fatigue life prediction of 2024-T3 aluminum (Al) alloy. In response to this issue, a parameter-solving method that integrates particle swarm optimization (PSO) with extreme gradient boosting (XGBoost) is proposed in this study. The fatigue performance and failure mechanism of the 2024-T3 Al alloy are analyzed. Furthermore, the fatigue life prediction physical model of the 2024-T3 Al alloy is established by using the energy method of fracture mechanics. The physical model incorporates critical physical parameters. Meanwhile, the PSO algorithm optimizes the hyperparameters of the XGBoost model based on fatigue data of the 2024-T3 Al alloy. Eventually, the optimized XGBoost model is used to solve the parameters of the physical model. Furthermore, the analytical equation of the fatigue life prediction model is obtained. This paper provides a new method for solving the parameters of the fatigue life prediction model, which reduces the error and cost of obtaining the model parameters in the experiment and shortens the time required.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>39517605</pmid><doi>10.3390/ma17215332</doi><orcidid>https://orcid.org/0000-0002-0900-5647</orcidid><orcidid>https://orcid.org/0000-0002-0834-5287</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1996-1944
ispartof Materials, 2024-10, Vol.17 (21), p.5332
issn 1996-1944
1996-1944
language eng
recordid cdi_proquest_miscellaneous_3128740132
source MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry; PubMed Central Open Access
subjects Accuracy
Algorithms
Alloys
Aluminum alloys
Aluminum base alloys
Analysis
Crack initiation
Crack propagation
Energy methods
Error analysis
Failure mechanisms
Fatigue
Fatigue failure
Fatigue life
Fatigue testing machines
Fracture mechanics
Hydraulics
Life prediction
Machine learning
Materials
Mathematical optimization
Metal fatigue
Parameters
Particle swarm optimization
Physical properties
Prediction models
Research methodology
Specialty metals industry
Stress concentration
title Fatigue Life Prediction of 2024-T3 Al Alloy by Integrating Particle Swarm Optimization-Extreme Gradient Boosting and Physical Model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T11%3A55%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fatigue%20Life%20Prediction%20of%202024-T3%20Al%20Alloy%20by%20Integrating%20Particle%20Swarm%20Optimization-Extreme%20Gradient%20Boosting%20and%20Physical%20Model&rft.jtitle=Materials&rft.au=Li,%20Zhaoji&rft.date=2024-10-31&rft.volume=17&rft.issue=21&rft.spage=5332&rft.pages=5332-&rft.issn=1996-1944&rft.eissn=1996-1944&rft_id=info:doi/10.3390/ma17215332&rft_dat=%3Cgale_proqu%3EA815420291%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3126026862&rft_id=info:pmid/39517605&rft_galeid=A815420291&rfr_iscdi=true