Elucidating the Structural Evolution of O3-type NaNi1/3Fe1/3Mn1/3O2: A Prototype Cathode for Na-Ion Battery
Extending the depth-of-charge (DoC) of the layered oxide cathode presents an essential route to improve the competitiveness of the Na-ion battery versus the commercialized LiFePO4-based Li-ion battery (0.8 CNY/Wh). However, the DoC-dependent boundary between detrimental/irreversible structural disto...
Gespeichert in:
Veröffentlicht in: | Journal of the American Chemical Society 2024-11, Vol.146 (46), p.31860-31872 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 31872 |
---|---|
container_issue | 46 |
container_start_page | 31860 |
container_title | Journal of the American Chemical Society |
container_volume | 146 |
creator | Fang, Kai Yin, Jianhua Zeng, Guifan Wu, Zixin Tang, Yonglin Yu, Dongyan Luo, Haiyan Liu, Qirui Zhang, Qinghua Qiu, Tian Huang, Huan Ning, Ziyang Ouyang, Chuying Gu, Lin Qiao, Yu Sun, Shi-Gang |
description | Extending the depth-of-charge (DoC) of the layered oxide cathode presents an essential route to improve the competitiveness of the Na-ion battery versus the commercialized LiFePO4-based Li-ion battery (0.8 CNY/Wh). However, the DoC-dependent boundary between detrimental/irreversible structural distortion and neutral/reversible structure interconversion cannot be clearly distinguished, which is attributed to the ambiguous recognition of correlation among the complex phase transition, local covalent environment evolution, and charge compensation. Herein, to bridge the above gap, we employed O3-NaNi1/3Fe1/3Mn1/3O2 as the prototype cathode and extended the target DoC from typical Na0.4 (∼125 mAh/g, 4.0 V cutoff) to Na0.2 (∼180 mAh/g, 4.3 V cutoff). Regarding phase transition and charge compensation, the O3-to-P3 phase transition occurs before moderate Na0.4-DoC (Fe/Mn redox silence, Ni oxidation dominated), while further desodiation (start from Na0.4) induces a P-to-O slab transition, resulting in the coexistence of P3 and OP2 phases and subsequent OP2/O3 intergrowth phases at higher DoC (Na0.2), upon which the Fe3+-to-Fe4+ oxidation is activated for capacity contribution. The local covalent environment presents severer deviation at high DoC (merely 0.2 mol desodiation from Na0.4 to Na0.2), which can be attributed not only to the slab gliding induced by the P-to-O slab transition but also to the further aggravation caused by the Jahn–Teller distortion of the FeO6 octahedron. Such irreversible distortion of the local covalent environment would be accumulated and evolved/deteriorated into structural degradation during long-term cycling. Furthermore, the rate-dependent artificial regulation of redox process has been demonstrated and the doping strategy toward structural stabilization has been proposed. |
doi_str_mv | 10.1021/jacs.4c11049 |
format | Article |
fullrecord | <record><control><sourceid>proquest_acs_j</sourceid><recordid>TN_cdi_proquest_miscellaneous_3128325474</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3128325474</sourcerecordid><originalsourceid>FETCH-LOGICAL-a151t-cc5788895a59b834f496c3f38e19d46e4931bffb6851dac64064c9257a76a9d13</originalsourceid><addsrcrecordid>eNpFkE1LAzEQhoMoWKs3f0COXrbN5GsTb7W0WqitoJ6XNJu1W9dNTbJC_71bFby8w8DzDsOD0DWQERAK452xccQtAOH6BA1AUJIJoPIUDQghNMuVZOfoIsZdv3KqYIDeZ01n69Kkun3DaevwcwqdTV0wDZ59-aZLtW-xr_CaZemwd3hlVjWM2dz18dj2saa3eIKfgk_-B5iatPWlw5UPPZwt-vqdScmFwyU6q0wT3dXfHKLX-exl-pAt1_eL6WSZGRCQMmtFrpTSwgi9UYxXXEvLKqYc6JJLxzWDTVVtpBJQGis5kdxqKnKTS6NLYEN083t3H_xn52IqPupoXdOY1vkuFgyoYlTwnP-jvbli57vQ9o8VQIqjz-Los_jzyb4BjgRmTA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3128325474</pqid></control><display><type>article</type><title>Elucidating the Structural Evolution of O3-type NaNi1/3Fe1/3Mn1/3O2: A Prototype Cathode for Na-Ion Battery</title><source>ACS Publications - Downers Grove, IL campus only.</source><creator>Fang, Kai ; Yin, Jianhua ; Zeng, Guifan ; Wu, Zixin ; Tang, Yonglin ; Yu, Dongyan ; Luo, Haiyan ; Liu, Qirui ; Zhang, Qinghua ; Qiu, Tian ; Huang, Huan ; Ning, Ziyang ; Ouyang, Chuying ; Gu, Lin ; Qiao, Yu ; Sun, Shi-Gang</creator><creatorcontrib>Fang, Kai ; Yin, Jianhua ; Zeng, Guifan ; Wu, Zixin ; Tang, Yonglin ; Yu, Dongyan ; Luo, Haiyan ; Liu, Qirui ; Zhang, Qinghua ; Qiu, Tian ; Huang, Huan ; Ning, Ziyang ; Ouyang, Chuying ; Gu, Lin ; Qiao, Yu ; Sun, Shi-Gang</creatorcontrib><description>Extending the depth-of-charge (DoC) of the layered oxide cathode presents an essential route to improve the competitiveness of the Na-ion battery versus the commercialized LiFePO4-based Li-ion battery (0.8 CNY/Wh). However, the DoC-dependent boundary between detrimental/irreversible structural distortion and neutral/reversible structure interconversion cannot be clearly distinguished, which is attributed to the ambiguous recognition of correlation among the complex phase transition, local covalent environment evolution, and charge compensation. Herein, to bridge the above gap, we employed O3-NaNi1/3Fe1/3Mn1/3O2 as the prototype cathode and extended the target DoC from typical Na0.4 (∼125 mAh/g, 4.0 V cutoff) to Na0.2 (∼180 mAh/g, 4.3 V cutoff). Regarding phase transition and charge compensation, the O3-to-P3 phase transition occurs before moderate Na0.4-DoC (Fe/Mn redox silence, Ni oxidation dominated), while further desodiation (start from Na0.4) induces a P-to-O slab transition, resulting in the coexistence of P3 and OP2 phases and subsequent OP2/O3 intergrowth phases at higher DoC (Na0.2), upon which the Fe3+-to-Fe4+ oxidation is activated for capacity contribution. The local covalent environment presents severer deviation at high DoC (merely 0.2 mol desodiation from Na0.4 to Na0.2), which can be attributed not only to the slab gliding induced by the P-to-O slab transition but also to the further aggravation caused by the Jahn–Teller distortion of the FeO6 octahedron. Such irreversible distortion of the local covalent environment would be accumulated and evolved/deteriorated into structural degradation during long-term cycling. Furthermore, the rate-dependent artificial regulation of redox process has been demonstrated and the doping strategy toward structural stabilization has been proposed.</description><identifier>ISSN: 0002-7863</identifier><identifier>ISSN: 1520-5126</identifier><identifier>EISSN: 1520-5126</identifier><identifier>DOI: 10.1021/jacs.4c11049</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>Journal of the American Chemical Society, 2024-11, Vol.146 (46), p.31860-31872</ispartof><rights>2024 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0001-8891-1682 ; 0000-0002-2191-3875 ; 0000-0003-2327-4090</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/jacs.4c11049$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/jacs.4c11049$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,27075,27923,27924,56737,56787</link.rule.ids></links><search><creatorcontrib>Fang, Kai</creatorcontrib><creatorcontrib>Yin, Jianhua</creatorcontrib><creatorcontrib>Zeng, Guifan</creatorcontrib><creatorcontrib>Wu, Zixin</creatorcontrib><creatorcontrib>Tang, Yonglin</creatorcontrib><creatorcontrib>Yu, Dongyan</creatorcontrib><creatorcontrib>Luo, Haiyan</creatorcontrib><creatorcontrib>Liu, Qirui</creatorcontrib><creatorcontrib>Zhang, Qinghua</creatorcontrib><creatorcontrib>Qiu, Tian</creatorcontrib><creatorcontrib>Huang, Huan</creatorcontrib><creatorcontrib>Ning, Ziyang</creatorcontrib><creatorcontrib>Ouyang, Chuying</creatorcontrib><creatorcontrib>Gu, Lin</creatorcontrib><creatorcontrib>Qiao, Yu</creatorcontrib><creatorcontrib>Sun, Shi-Gang</creatorcontrib><title>Elucidating the Structural Evolution of O3-type NaNi1/3Fe1/3Mn1/3O2: A Prototype Cathode for Na-Ion Battery</title><title>Journal of the American Chemical Society</title><addtitle>J. Am. Chem. Soc</addtitle><description>Extending the depth-of-charge (DoC) of the layered oxide cathode presents an essential route to improve the competitiveness of the Na-ion battery versus the commercialized LiFePO4-based Li-ion battery (0.8 CNY/Wh). However, the DoC-dependent boundary between detrimental/irreversible structural distortion and neutral/reversible structure interconversion cannot be clearly distinguished, which is attributed to the ambiguous recognition of correlation among the complex phase transition, local covalent environment evolution, and charge compensation. Herein, to bridge the above gap, we employed O3-NaNi1/3Fe1/3Mn1/3O2 as the prototype cathode and extended the target DoC from typical Na0.4 (∼125 mAh/g, 4.0 V cutoff) to Na0.2 (∼180 mAh/g, 4.3 V cutoff). Regarding phase transition and charge compensation, the O3-to-P3 phase transition occurs before moderate Na0.4-DoC (Fe/Mn redox silence, Ni oxidation dominated), while further desodiation (start from Na0.4) induces a P-to-O slab transition, resulting in the coexistence of P3 and OP2 phases and subsequent OP2/O3 intergrowth phases at higher DoC (Na0.2), upon which the Fe3+-to-Fe4+ oxidation is activated for capacity contribution. The local covalent environment presents severer deviation at high DoC (merely 0.2 mol desodiation from Na0.4 to Na0.2), which can be attributed not only to the slab gliding induced by the P-to-O slab transition but also to the further aggravation caused by the Jahn–Teller distortion of the FeO6 octahedron. Such irreversible distortion of the local covalent environment would be accumulated and evolved/deteriorated into structural degradation during long-term cycling. Furthermore, the rate-dependent artificial regulation of redox process has been demonstrated and the doping strategy toward structural stabilization has been proposed.</description><issn>0002-7863</issn><issn>1520-5126</issn><issn>1520-5126</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpFkE1LAzEQhoMoWKs3f0COXrbN5GsTb7W0WqitoJ6XNJu1W9dNTbJC_71bFby8w8DzDsOD0DWQERAK452xccQtAOH6BA1AUJIJoPIUDQghNMuVZOfoIsZdv3KqYIDeZ01n69Kkun3DaevwcwqdTV0wDZ59-aZLtW-xr_CaZemwd3hlVjWM2dz18dj2saa3eIKfgk_-B5iatPWlw5UPPZwt-vqdScmFwyU6q0wT3dXfHKLX-exl-pAt1_eL6WSZGRCQMmtFrpTSwgi9UYxXXEvLKqYc6JJLxzWDTVVtpBJQGis5kdxqKnKTS6NLYEN083t3H_xn52IqPupoXdOY1vkuFgyoYlTwnP-jvbli57vQ9o8VQIqjz-Los_jzyb4BjgRmTA</recordid><startdate>20241120</startdate><enddate>20241120</enddate><creator>Fang, Kai</creator><creator>Yin, Jianhua</creator><creator>Zeng, Guifan</creator><creator>Wu, Zixin</creator><creator>Tang, Yonglin</creator><creator>Yu, Dongyan</creator><creator>Luo, Haiyan</creator><creator>Liu, Qirui</creator><creator>Zhang, Qinghua</creator><creator>Qiu, Tian</creator><creator>Huang, Huan</creator><creator>Ning, Ziyang</creator><creator>Ouyang, Chuying</creator><creator>Gu, Lin</creator><creator>Qiao, Yu</creator><creator>Sun, Shi-Gang</creator><general>American Chemical Society</general><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-8891-1682</orcidid><orcidid>https://orcid.org/0000-0002-2191-3875</orcidid><orcidid>https://orcid.org/0000-0003-2327-4090</orcidid></search><sort><creationdate>20241120</creationdate><title>Elucidating the Structural Evolution of O3-type NaNi1/3Fe1/3Mn1/3O2: A Prototype Cathode for Na-Ion Battery</title><author>Fang, Kai ; Yin, Jianhua ; Zeng, Guifan ; Wu, Zixin ; Tang, Yonglin ; Yu, Dongyan ; Luo, Haiyan ; Liu, Qirui ; Zhang, Qinghua ; Qiu, Tian ; Huang, Huan ; Ning, Ziyang ; Ouyang, Chuying ; Gu, Lin ; Qiao, Yu ; Sun, Shi-Gang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a151t-cc5788895a59b834f496c3f38e19d46e4931bffb6851dac64064c9257a76a9d13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fang, Kai</creatorcontrib><creatorcontrib>Yin, Jianhua</creatorcontrib><creatorcontrib>Zeng, Guifan</creatorcontrib><creatorcontrib>Wu, Zixin</creatorcontrib><creatorcontrib>Tang, Yonglin</creatorcontrib><creatorcontrib>Yu, Dongyan</creatorcontrib><creatorcontrib>Luo, Haiyan</creatorcontrib><creatorcontrib>Liu, Qirui</creatorcontrib><creatorcontrib>Zhang, Qinghua</creatorcontrib><creatorcontrib>Qiu, Tian</creatorcontrib><creatorcontrib>Huang, Huan</creatorcontrib><creatorcontrib>Ning, Ziyang</creatorcontrib><creatorcontrib>Ouyang, Chuying</creatorcontrib><creatorcontrib>Gu, Lin</creatorcontrib><creatorcontrib>Qiao, Yu</creatorcontrib><creatorcontrib>Sun, Shi-Gang</creatorcontrib><collection>MEDLINE - Academic</collection><jtitle>Journal of the American Chemical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fang, Kai</au><au>Yin, Jianhua</au><au>Zeng, Guifan</au><au>Wu, Zixin</au><au>Tang, Yonglin</au><au>Yu, Dongyan</au><au>Luo, Haiyan</au><au>Liu, Qirui</au><au>Zhang, Qinghua</au><au>Qiu, Tian</au><au>Huang, Huan</au><au>Ning, Ziyang</au><au>Ouyang, Chuying</au><au>Gu, Lin</au><au>Qiao, Yu</au><au>Sun, Shi-Gang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Elucidating the Structural Evolution of O3-type NaNi1/3Fe1/3Mn1/3O2: A Prototype Cathode for Na-Ion Battery</atitle><jtitle>Journal of the American Chemical Society</jtitle><addtitle>J. Am. Chem. Soc</addtitle><date>2024-11-20</date><risdate>2024</risdate><volume>146</volume><issue>46</issue><spage>31860</spage><epage>31872</epage><pages>31860-31872</pages><issn>0002-7863</issn><issn>1520-5126</issn><eissn>1520-5126</eissn><abstract>Extending the depth-of-charge (DoC) of the layered oxide cathode presents an essential route to improve the competitiveness of the Na-ion battery versus the commercialized LiFePO4-based Li-ion battery (0.8 CNY/Wh). However, the DoC-dependent boundary between detrimental/irreversible structural distortion and neutral/reversible structure interconversion cannot be clearly distinguished, which is attributed to the ambiguous recognition of correlation among the complex phase transition, local covalent environment evolution, and charge compensation. Herein, to bridge the above gap, we employed O3-NaNi1/3Fe1/3Mn1/3O2 as the prototype cathode and extended the target DoC from typical Na0.4 (∼125 mAh/g, 4.0 V cutoff) to Na0.2 (∼180 mAh/g, 4.3 V cutoff). Regarding phase transition and charge compensation, the O3-to-P3 phase transition occurs before moderate Na0.4-DoC (Fe/Mn redox silence, Ni oxidation dominated), while further desodiation (start from Na0.4) induces a P-to-O slab transition, resulting in the coexistence of P3 and OP2 phases and subsequent OP2/O3 intergrowth phases at higher DoC (Na0.2), upon which the Fe3+-to-Fe4+ oxidation is activated for capacity contribution. The local covalent environment presents severer deviation at high DoC (merely 0.2 mol desodiation from Na0.4 to Na0.2), which can be attributed not only to the slab gliding induced by the P-to-O slab transition but also to the further aggravation caused by the Jahn–Teller distortion of the FeO6 octahedron. Such irreversible distortion of the local covalent environment would be accumulated and evolved/deteriorated into structural degradation during long-term cycling. Furthermore, the rate-dependent artificial regulation of redox process has been demonstrated and the doping strategy toward structural stabilization has been proposed.</abstract><pub>American Chemical Society</pub><doi>10.1021/jacs.4c11049</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-8891-1682</orcidid><orcidid>https://orcid.org/0000-0002-2191-3875</orcidid><orcidid>https://orcid.org/0000-0003-2327-4090</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0002-7863 |
ispartof | Journal of the American Chemical Society, 2024-11, Vol.146 (46), p.31860-31872 |
issn | 0002-7863 1520-5126 1520-5126 |
language | eng |
recordid | cdi_proquest_miscellaneous_3128325474 |
source | ACS Publications - Downers Grove, IL campus only. |
title | Elucidating the Structural Evolution of O3-type NaNi1/3Fe1/3Mn1/3O2: A Prototype Cathode for Na-Ion Battery |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T18%3A09%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_acs_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Elucidating%20the%20Structural%20Evolution%20of%20O3-type%20NaNi1/3Fe1/3Mn1/3O2:%20A%20Prototype%20Cathode%20for%20Na-Ion%20Battery&rft.jtitle=Journal%20of%20the%20American%20Chemical%20Society&rft.au=Fang,%20Kai&rft.date=2024-11-20&rft.volume=146&rft.issue=46&rft.spage=31860&rft.epage=31872&rft.pages=31860-31872&rft.issn=0002-7863&rft.eissn=1520-5126&rft_id=info:doi/10.1021/jacs.4c11049&rft_dat=%3Cproquest_acs_j%3E3128325474%3C/proquest_acs_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3128325474&rft_id=info:pmid/&rfr_iscdi=true |