Graphite‐Based Bio‐Mimetic Nanopores for Protein Sequencing and Beyond

Protein sequencing using nanopores represents the next frontier in bio‐analytics. However, linearizing unfolded proteins and controlling their translocation speed through solid‐state nanopores pose significant challenges in protein sequencing. In order to address these issues, this work proposes a b...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Small (Weinheim an der Bergstrasse, Germany) Germany), 2025-01, Vol.21 (2), p.e2407647-n/a
Hauptverfasser: Das, Chandan K., Fyta, Maria
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 2
container_start_page e2407647
container_title Small (Weinheim an der Bergstrasse, Germany)
container_volume 21
creator Das, Chandan K.
Fyta, Maria
description Protein sequencing using nanopores represents the next frontier in bio‐analytics. However, linearizing unfolded proteins and controlling their translocation speed through solid‐state nanopores pose significant challenges in protein sequencing. In order to address these issues, this work proposes a biomimetic graphite‐based nanopore construction. These nanopores feature a nanometer‐sized pore with a constriction zone, mimicking the structure of the α‐hemolysin protein pore. Our all‐atom Molecular Dynamics simulations demonstrate the high practical potential of these nanopores by revealing how their charge state renders them complete ion‐selective and generates an electro‐osmotic flow. This study shows that this nanopore construction can detect peptides at the single amino acid level by analyzing the ionic current traces generated as peptides traverse the nanopore. The novelty of the proposed nanopore lies in its ability to modulate the hydrodynamic drag induced by electro‐osmotic flow, relative to the electro‐phoretic force. This investigation reveals that tuning these forces helps to linearize translocating peptides and extend the residence time of individual amino acids at the constriction zone of the pore. This significantly enhances the detection and sequencing efficiency of the pore. Furthermore, the high relevance of the proposed nanopores is underscored for seawater desalination through electrodialysis and extends to ion separation under salinity gradients. A graphite‐based nanopore, inspired from α‐hemolysin, enables protein sequencing and single amino acid detection by leveraging charge‐driven ion selectivity and electro‐osmotic flow. This tunable nanopore design also offers promising applications in seawater desalination and renewable energy generation through salinity gradient exploitation.
doi_str_mv 10.1002/smll.202407647
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_3128324995</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3155880164</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3547-eb2b6e7e6141e45aff500d89861195873ec3e388fce8bb64be7f4509e99560083</originalsourceid><addsrcrecordid>eNqFkc9O3DAQxi1UBBR65Ygi9cJlF0_8N6cKEKVFC1SiPVtOdgJGib3YWdDeeASesU9So4Vty4XTjDS_-cafP0J2gY6B0vIg9V03LmnJqZJcrZEtkMBGUpfVh1UPdJN8TOmWUgYlVxtkk1UCQCvYImen0c5u3IC_H5-ObMJpceRC7s9dj4NrigvrwyxETEUbYvEjhgGdL67wbo6-cf66sD6v4CL46Q5Zb22X8NNL3Sa_vp78PP42mlyefj8-nIwaJrgaYV3WEhVK4IBc2LYVlE51pSVAJbRi2DBkWrcN6rqWvEbVckErrCohKdVsm3xZ6s7mdY_TBv0QbWdm0fU2Lkywzvw_8e7GXId7A6BYPqCywv6LQgzZSBpM71KDXWc9hnky-Zs0K3k-mNHPb9DbMI8--8uUEFpTkDxT4yXVxJBSxHb1GqDmOSfznJNZ5ZQX9v71sMJfg8lAtQQeXIeLd-TM1flk8lf8D7sqoSc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3155880164</pqid></control><display><type>article</type><title>Graphite‐Based Bio‐Mimetic Nanopores for Protein Sequencing and Beyond</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Das, Chandan K. ; Fyta, Maria</creator><creatorcontrib>Das, Chandan K. ; Fyta, Maria</creatorcontrib><description>Protein sequencing using nanopores represents the next frontier in bio‐analytics. However, linearizing unfolded proteins and controlling their translocation speed through solid‐state nanopores pose significant challenges in protein sequencing. In order to address these issues, this work proposes a biomimetic graphite‐based nanopore construction. These nanopores feature a nanometer‐sized pore with a constriction zone, mimicking the structure of the α‐hemolysin protein pore. Our all‐atom Molecular Dynamics simulations demonstrate the high practical potential of these nanopores by revealing how their charge state renders them complete ion‐selective and generates an electro‐osmotic flow. This study shows that this nanopore construction can detect peptides at the single amino acid level by analyzing the ionic current traces generated as peptides traverse the nanopore. The novelty of the proposed nanopore lies in its ability to modulate the hydrodynamic drag induced by electro‐osmotic flow, relative to the electro‐phoretic force. This investigation reveals that tuning these forces helps to linearize translocating peptides and extend the residence time of individual amino acids at the constriction zone of the pore. This significantly enhances the detection and sequencing efficiency of the pore. Furthermore, the high relevance of the proposed nanopores is underscored for seawater desalination through electrodialysis and extends to ion separation under salinity gradients. A graphite‐based nanopore, inspired from α‐hemolysin, enables protein sequencing and single amino acid detection by leveraging charge‐driven ion selectivity and electro‐osmotic flow. This tunable nanopore design also offers promising applications in seawater desalination and renewable energy generation through salinity gradient exploitation.</description><identifier>ISSN: 1613-6810</identifier><identifier>ISSN: 1613-6829</identifier><identifier>EISSN: 1613-6829</identifier><identifier>DOI: 10.1002/smll.202407647</identifier><identifier>PMID: 39511871</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Amino acids ; blue energy ; Constrictions ; Dynamic structural analysis ; Electrodialysis ; Graphite ; Graphite - chemistry ; Molecular dynamics ; Molecular Dynamics Simulation ; nanopore ; Nanopores ; Peptides ; Peptides - chemistry ; protein sequencing ; Proteins ; Proteins - chemistry ; Seawater ; Sequence Analysis, Protein - methods ; Sequences</subject><ispartof>Small (Weinheim an der Bergstrasse, Germany), 2025-01, Vol.21 (2), p.e2407647-n/a</ispartof><rights>2024 The Author(s). Small published by Wiley‐VCH GmbH</rights><rights>2024 The Author(s). Small published by Wiley‐VCH GmbH.</rights><rights>2024. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c3547-eb2b6e7e6141e45aff500d89861195873ec3e388fce8bb64be7f4509e99560083</cites><orcidid>0009-0000-4838-8233</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fsmll.202407647$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fsmll.202407647$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,1411,27903,27904,45553,45554</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39511871$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Das, Chandan K.</creatorcontrib><creatorcontrib>Fyta, Maria</creatorcontrib><title>Graphite‐Based Bio‐Mimetic Nanopores for Protein Sequencing and Beyond</title><title>Small (Weinheim an der Bergstrasse, Germany)</title><addtitle>Small</addtitle><description>Protein sequencing using nanopores represents the next frontier in bio‐analytics. However, linearizing unfolded proteins and controlling their translocation speed through solid‐state nanopores pose significant challenges in protein sequencing. In order to address these issues, this work proposes a biomimetic graphite‐based nanopore construction. These nanopores feature a nanometer‐sized pore with a constriction zone, mimicking the structure of the α‐hemolysin protein pore. Our all‐atom Molecular Dynamics simulations demonstrate the high practical potential of these nanopores by revealing how their charge state renders them complete ion‐selective and generates an electro‐osmotic flow. This study shows that this nanopore construction can detect peptides at the single amino acid level by analyzing the ionic current traces generated as peptides traverse the nanopore. The novelty of the proposed nanopore lies in its ability to modulate the hydrodynamic drag induced by electro‐osmotic flow, relative to the electro‐phoretic force. This investigation reveals that tuning these forces helps to linearize translocating peptides and extend the residence time of individual amino acids at the constriction zone of the pore. This significantly enhances the detection and sequencing efficiency of the pore. Furthermore, the high relevance of the proposed nanopores is underscored for seawater desalination through electrodialysis and extends to ion separation under salinity gradients. A graphite‐based nanopore, inspired from α‐hemolysin, enables protein sequencing and single amino acid detection by leveraging charge‐driven ion selectivity and electro‐osmotic flow. This tunable nanopore design also offers promising applications in seawater desalination and renewable energy generation through salinity gradient exploitation.</description><subject>Amino acids</subject><subject>blue energy</subject><subject>Constrictions</subject><subject>Dynamic structural analysis</subject><subject>Electrodialysis</subject><subject>Graphite</subject><subject>Graphite - chemistry</subject><subject>Molecular dynamics</subject><subject>Molecular Dynamics Simulation</subject><subject>nanopore</subject><subject>Nanopores</subject><subject>Peptides</subject><subject>Peptides - chemistry</subject><subject>protein sequencing</subject><subject>Proteins</subject><subject>Proteins - chemistry</subject><subject>Seawater</subject><subject>Sequence Analysis, Protein - methods</subject><subject>Sequences</subject><issn>1613-6810</issn><issn>1613-6829</issn><issn>1613-6829</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>EIF</sourceid><recordid>eNqFkc9O3DAQxi1UBBR65Ygi9cJlF0_8N6cKEKVFC1SiPVtOdgJGib3YWdDeeASesU9So4Vty4XTjDS_-cafP0J2gY6B0vIg9V03LmnJqZJcrZEtkMBGUpfVh1UPdJN8TOmWUgYlVxtkk1UCQCvYImen0c5u3IC_H5-ObMJpceRC7s9dj4NrigvrwyxETEUbYvEjhgGdL67wbo6-cf66sD6v4CL46Q5Zb22X8NNL3Sa_vp78PP42mlyefj8-nIwaJrgaYV3WEhVK4IBc2LYVlE51pSVAJbRi2DBkWrcN6rqWvEbVckErrCohKdVsm3xZ6s7mdY_TBv0QbWdm0fU2Lkywzvw_8e7GXId7A6BYPqCywv6LQgzZSBpM71KDXWc9hnky-Zs0K3k-mNHPb9DbMI8--8uUEFpTkDxT4yXVxJBSxHb1GqDmOSfznJNZ5ZQX9v71sMJfg8lAtQQeXIeLd-TM1flk8lf8D7sqoSc</recordid><startdate>202501</startdate><enddate>202501</enddate><creator>Das, Chandan K.</creator><creator>Fyta, Maria</creator><general>Wiley Subscription Services, Inc</general><general>John Wiley and Sons Inc</general><scope>24P</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0009-0000-4838-8233</orcidid></search><sort><creationdate>202501</creationdate><title>Graphite‐Based Bio‐Mimetic Nanopores for Protein Sequencing and Beyond</title><author>Das, Chandan K. ; Fyta, Maria</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3547-eb2b6e7e6141e45aff500d89861195873ec3e388fce8bb64be7f4509e99560083</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>Amino acids</topic><topic>blue energy</topic><topic>Constrictions</topic><topic>Dynamic structural analysis</topic><topic>Electrodialysis</topic><topic>Graphite</topic><topic>Graphite - chemistry</topic><topic>Molecular dynamics</topic><topic>Molecular Dynamics Simulation</topic><topic>nanopore</topic><topic>Nanopores</topic><topic>Peptides</topic><topic>Peptides - chemistry</topic><topic>protein sequencing</topic><topic>Proteins</topic><topic>Proteins - chemistry</topic><topic>Seawater</topic><topic>Sequence Analysis, Protein - methods</topic><topic>Sequences</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Das, Chandan K.</creatorcontrib><creatorcontrib>Fyta, Maria</creatorcontrib><collection>Wiley-Blackwell Open Access Titles</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Das, Chandan K.</au><au>Fyta, Maria</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Graphite‐Based Bio‐Mimetic Nanopores for Protein Sequencing and Beyond</atitle><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle><addtitle>Small</addtitle><date>2025-01</date><risdate>2025</risdate><volume>21</volume><issue>2</issue><spage>e2407647</spage><epage>n/a</epage><pages>e2407647-n/a</pages><issn>1613-6810</issn><issn>1613-6829</issn><eissn>1613-6829</eissn><abstract>Protein sequencing using nanopores represents the next frontier in bio‐analytics. However, linearizing unfolded proteins and controlling their translocation speed through solid‐state nanopores pose significant challenges in protein sequencing. In order to address these issues, this work proposes a biomimetic graphite‐based nanopore construction. These nanopores feature a nanometer‐sized pore with a constriction zone, mimicking the structure of the α‐hemolysin protein pore. Our all‐atom Molecular Dynamics simulations demonstrate the high practical potential of these nanopores by revealing how their charge state renders them complete ion‐selective and generates an electro‐osmotic flow. This study shows that this nanopore construction can detect peptides at the single amino acid level by analyzing the ionic current traces generated as peptides traverse the nanopore. The novelty of the proposed nanopore lies in its ability to modulate the hydrodynamic drag induced by electro‐osmotic flow, relative to the electro‐phoretic force. This investigation reveals that tuning these forces helps to linearize translocating peptides and extend the residence time of individual amino acids at the constriction zone of the pore. This significantly enhances the detection and sequencing efficiency of the pore. Furthermore, the high relevance of the proposed nanopores is underscored for seawater desalination through electrodialysis and extends to ion separation under salinity gradients. A graphite‐based nanopore, inspired from α‐hemolysin, enables protein sequencing and single amino acid detection by leveraging charge‐driven ion selectivity and electro‐osmotic flow. This tunable nanopore design also offers promising applications in seawater desalination and renewable energy generation through salinity gradient exploitation.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>39511871</pmid><doi>10.1002/smll.202407647</doi><tpages>13</tpages><orcidid>https://orcid.org/0009-0000-4838-8233</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1613-6810
ispartof Small (Weinheim an der Bergstrasse, Germany), 2025-01, Vol.21 (2), p.e2407647-n/a
issn 1613-6810
1613-6829
1613-6829
language eng
recordid cdi_proquest_miscellaneous_3128324995
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects Amino acids
blue energy
Constrictions
Dynamic structural analysis
Electrodialysis
Graphite
Graphite - chemistry
Molecular dynamics
Molecular Dynamics Simulation
nanopore
Nanopores
Peptides
Peptides - chemistry
protein sequencing
Proteins
Proteins - chemistry
Seawater
Sequence Analysis, Protein - methods
Sequences
title Graphite‐Based Bio‐Mimetic Nanopores for Protein Sequencing and Beyond
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T22%3A50%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Graphite%E2%80%90Based%20Bio%E2%80%90Mimetic%20Nanopores%20for%20Protein%20Sequencing%20and%20Beyond&rft.jtitle=Small%20(Weinheim%20an%20der%20Bergstrasse,%20Germany)&rft.au=Das,%20Chandan%20K.&rft.date=2025-01&rft.volume=21&rft.issue=2&rft.spage=e2407647&rft.epage=n/a&rft.pages=e2407647-n/a&rft.issn=1613-6810&rft.eissn=1613-6829&rft_id=info:doi/10.1002/smll.202407647&rft_dat=%3Cproquest_pubme%3E3155880164%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3155880164&rft_id=info:pmid/39511871&rfr_iscdi=true