LSMD: Long-Short Memory-Based Detection Network for Carotid Artery Detection in B-Mode Ultrasound Video Streams

Carotid atherosclerotic plaques are a major complication associated with type II diabetes, and carotid ultrasound is commonly used for diagnosing carotid vascular disease. In primary hospitals, less experienced ultrasound physicians often struggle to consistently capture standard carotid images and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on ultrasonics, ferroelectrics, and frequency control ferroelectrics, and frequency control, 2024-11, Vol.71 (11), p.1464-1477
Hauptverfasser: Shan, Chunjie, Zhang, Yidan, Liu, Chunrui, Jin, Zhibin, Cheng, Hanlin, Chen, Yidi, Yao, Jing, Luo, Shouhua
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1477
container_issue 11
container_start_page 1464
container_title IEEE transactions on ultrasonics, ferroelectrics, and frequency control
container_volume 71
creator Shan, Chunjie
Zhang, Yidan
Liu, Chunrui
Jin, Zhibin
Cheng, Hanlin
Chen, Yidi
Yao, Jing
Luo, Shouhua
description Carotid atherosclerotic plaques are a major complication associated with type II diabetes, and carotid ultrasound is commonly used for diagnosing carotid vascular disease. In primary hospitals, less experienced ultrasound physicians often struggle to consistently capture standard carotid images and identify plaques. To address this issue, we propose a novel approach, the long-short memory-based detection (LSMD) network, for carotid artery detection in ultrasound video streams, facilitating the identification and localization of critical anatomical structures and plaques. This approach models short- and long-distance spatiotemporal features through short-term temporal aggregation (STA) and long-term temporal aggregation (LTA) modules, effectively expanding the temporal receptive field with minimal delay and enhancing the detection efficiency of carotid anatomy and plaques. Specifically, we introduce memory buffers with a dynamic updating strategy to ensure extensive temporal receptive field coverage while minimizing memory and computation costs. The proposed model was trained on 80 carotid ultrasound videos and evaluated on 50, with all videos annotated by physicians for carotid anatomies and plaques. The trained LSMD was evaluated for performance on the validation and test sets using the single-frame image-based single shot multibox detector (SSD) algorithm as a baseline. The results show that the precision, recall, average precision (AP) at \text {IoU}={0.50} ( \text {AP}_{{50}} ), and mean AP (mAP) are 6.83%, 12.29%, 11.23%, and 13.21% higher than the baseline ( {p}\lt {0.001} ), respectively, while the model's inference latency reaches 6.97 ms on a desktop-level GPU (NVIDIA RTX 3090Ti) and 29.69 ms on an edge computing device (Jetson Orin Nano). These findings demonstrate that LSMD can accurately localize carotid anatomy and plaques with real-time inference, indicating its potential for enhancing diagnostic accuracy in clinical practice.
doi_str_mv 10.1109/TUFFC.2024.3494019
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_3128323540</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10747830</ieee_id><sourcerecordid>3128323540</sourcerecordid><originalsourceid>FETCH-LOGICAL-c233t-3cce131d94c11b23e30d6f00958b22fa01508c8762d818274ca2ab40cb40c8963</originalsourceid><addsrcrecordid>eNpdkcFuEzEQhi0EomnhBRBClrhw2TD22FkvtzYlgJTAIQ3XlWPPwpbsutheobx9N01AFYfRXL7_02h-xl4JmAoB1fubzWIxn0qQaoqqUiCqJ2witNSFqbR-yiZgjC4QBJyx85RuAYRSlXzOzrDSQqEuJyws16vrD3wZ-h_F-meIma-oC3FfXNlEnl9TJpfb0POvlP-E-Is3IfK5jSG3nl_GTHH_CGp7flWsgie-2eVoUxh6z7-3ngJf50i2Sy_Ys8buEr087Qu2WXy8mX8ult8-fZlfLgsnEXOBzpFA4SvlhNhKJAQ_awAqbbZSNhaEBuNMOZPeCCNL5ay0WwXuMKaa4QV7d_TexfB7oJTrrk2OdjvbUxhSjUIalKgVjOjb_9DbMMR-vG6kEJUx6kEoj5SLIaVITX0X287GfS2gPtRRP9RRH-qoT3WMoTcn9bDtyP-L_P3_CLw-Ai0RPTKWqjQIeA8Q-IzY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3133488496</pqid></control><display><type>article</type><title>LSMD: Long-Short Memory-Based Detection Network for Carotid Artery Detection in B-Mode Ultrasound Video Streams</title><source>IEEE Electronic Library (IEL)</source><creator>Shan, Chunjie ; Zhang, Yidan ; Liu, Chunrui ; Jin, Zhibin ; Cheng, Hanlin ; Chen, Yidi ; Yao, Jing ; Luo, Shouhua</creator><creatorcontrib>Shan, Chunjie ; Zhang, Yidan ; Liu, Chunrui ; Jin, Zhibin ; Cheng, Hanlin ; Chen, Yidi ; Yao, Jing ; Luo, Shouhua</creatorcontrib><description><![CDATA[Carotid atherosclerotic plaques are a major complication associated with type II diabetes, and carotid ultrasound is commonly used for diagnosing carotid vascular disease. In primary hospitals, less experienced ultrasound physicians often struggle to consistently capture standard carotid images and identify plaques. To address this issue, we propose a novel approach, the long-short memory-based detection (LSMD) network, for carotid artery detection in ultrasound video streams, facilitating the identification and localization of critical anatomical structures and plaques. This approach models short- and long-distance spatiotemporal features through short-term temporal aggregation (STA) and long-term temporal aggregation (LTA) modules, effectively expanding the temporal receptive field with minimal delay and enhancing the detection efficiency of carotid anatomy and plaques. Specifically, we introduce memory buffers with a dynamic updating strategy to ensure extensive temporal receptive field coverage while minimizing memory and computation costs. The proposed model was trained on 80 carotid ultrasound videos and evaluated on 50, with all videos annotated by physicians for carotid anatomies and plaques. The trained LSMD was evaluated for performance on the validation and test sets using the single-frame image-based single shot multibox detector (SSD) algorithm as a baseline. The results show that the precision, recall, average precision (AP) at <inline-formula> <tex-math notation="LaTeX">\text {IoU}={0.50} </tex-math></inline-formula> (<inline-formula> <tex-math notation="LaTeX">\text {AP}_{{50}} </tex-math></inline-formula>), and mean AP (mAP) are 6.83%, 12.29%, 11.23%, and 13.21% higher than the baseline (<inline-formula> <tex-math notation="LaTeX">{p}\lt {0.001} </tex-math></inline-formula>), respectively, while the model's inference latency reaches 6.97 ms on a desktop-level GPU (NVIDIA RTX 3090Ti) and 29.69 ms on an edge computing device (Jetson Orin Nano). These findings demonstrate that LSMD can accurately localize carotid anatomy and plaques with real-time inference, indicating its potential for enhancing diagnostic accuracy in clinical practice.]]></description><identifier>ISSN: 0885-3010</identifier><identifier>ISSN: 1525-8955</identifier><identifier>EISSN: 1525-8955</identifier><identifier>DOI: 10.1109/TUFFC.2024.3494019</identifier><identifier>PMID: 39514357</identifier><identifier>CODEN: ITUCER</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Accuracy ; Algorithms ; Anatomical structure ; Anatomy ; Annotations ; Atherosclerosis ; Carotid arteries ; Carotid artery ; Computer memory ; detection network ; Edge computing ; Frequency control ; Image enhancement ; Inference ; long-short memory-based ; Medical imaging ; Object detection ; Performance evaluation ; Physicians ; Real time ; Real-time systems ; Solid state devices ; Streaming media ; Streams ; Ultrasonic imaging ; ultrasound video streams ; Video data</subject><ispartof>IEEE transactions on ultrasonics, ferroelectrics, and frequency control, 2024-11, Vol.71 (11), p.1464-1477</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c233t-3cce131d94c11b23e30d6f00958b22fa01508c8762d818274ca2ab40cb40c8963</cites><orcidid>0000-0001-7376-7390 ; 0009-0007-1179-3674 ; 0000-0002-3307-1652</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10747830$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10747830$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39514357$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Shan, Chunjie</creatorcontrib><creatorcontrib>Zhang, Yidan</creatorcontrib><creatorcontrib>Liu, Chunrui</creatorcontrib><creatorcontrib>Jin, Zhibin</creatorcontrib><creatorcontrib>Cheng, Hanlin</creatorcontrib><creatorcontrib>Chen, Yidi</creatorcontrib><creatorcontrib>Yao, Jing</creatorcontrib><creatorcontrib>Luo, Shouhua</creatorcontrib><title>LSMD: Long-Short Memory-Based Detection Network for Carotid Artery Detection in B-Mode Ultrasound Video Streams</title><title>IEEE transactions on ultrasonics, ferroelectrics, and frequency control</title><addtitle>T-UFFC</addtitle><addtitle>IEEE Trans Ultrason Ferroelectr Freq Control</addtitle><description><![CDATA[Carotid atherosclerotic plaques are a major complication associated with type II diabetes, and carotid ultrasound is commonly used for diagnosing carotid vascular disease. In primary hospitals, less experienced ultrasound physicians often struggle to consistently capture standard carotid images and identify plaques. To address this issue, we propose a novel approach, the long-short memory-based detection (LSMD) network, for carotid artery detection in ultrasound video streams, facilitating the identification and localization of critical anatomical structures and plaques. This approach models short- and long-distance spatiotemporal features through short-term temporal aggregation (STA) and long-term temporal aggregation (LTA) modules, effectively expanding the temporal receptive field with minimal delay and enhancing the detection efficiency of carotid anatomy and plaques. Specifically, we introduce memory buffers with a dynamic updating strategy to ensure extensive temporal receptive field coverage while minimizing memory and computation costs. The proposed model was trained on 80 carotid ultrasound videos and evaluated on 50, with all videos annotated by physicians for carotid anatomies and plaques. The trained LSMD was evaluated for performance on the validation and test sets using the single-frame image-based single shot multibox detector (SSD) algorithm as a baseline. The results show that the precision, recall, average precision (AP) at <inline-formula> <tex-math notation="LaTeX">\text {IoU}={0.50} </tex-math></inline-formula> (<inline-formula> <tex-math notation="LaTeX">\text {AP}_{{50}} </tex-math></inline-formula>), and mean AP (mAP) are 6.83%, 12.29%, 11.23%, and 13.21% higher than the baseline (<inline-formula> <tex-math notation="LaTeX">{p}\lt {0.001} </tex-math></inline-formula>), respectively, while the model's inference latency reaches 6.97 ms on a desktop-level GPU (NVIDIA RTX 3090Ti) and 29.69 ms on an edge computing device (Jetson Orin Nano). These findings demonstrate that LSMD can accurately localize carotid anatomy and plaques with real-time inference, indicating its potential for enhancing diagnostic accuracy in clinical practice.]]></description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Anatomical structure</subject><subject>Anatomy</subject><subject>Annotations</subject><subject>Atherosclerosis</subject><subject>Carotid arteries</subject><subject>Carotid artery</subject><subject>Computer memory</subject><subject>detection network</subject><subject>Edge computing</subject><subject>Frequency control</subject><subject>Image enhancement</subject><subject>Inference</subject><subject>long-short memory-based</subject><subject>Medical imaging</subject><subject>Object detection</subject><subject>Performance evaluation</subject><subject>Physicians</subject><subject>Real time</subject><subject>Real-time systems</subject><subject>Solid state devices</subject><subject>Streaming media</subject><subject>Streams</subject><subject>Ultrasonic imaging</subject><subject>ultrasound video streams</subject><subject>Video data</subject><issn>0885-3010</issn><issn>1525-8955</issn><issn>1525-8955</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkcFuEzEQhi0EomnhBRBClrhw2TD22FkvtzYlgJTAIQ3XlWPPwpbsutheobx9N01AFYfRXL7_02h-xl4JmAoB1fubzWIxn0qQaoqqUiCqJ2witNSFqbR-yiZgjC4QBJyx85RuAYRSlXzOzrDSQqEuJyws16vrD3wZ-h_F-meIma-oC3FfXNlEnl9TJpfb0POvlP-E-Is3IfK5jSG3nl_GTHH_CGp7flWsgie-2eVoUxh6z7-3ngJf50i2Sy_Ys8buEr087Qu2WXy8mX8ult8-fZlfLgsnEXOBzpFA4SvlhNhKJAQ_awAqbbZSNhaEBuNMOZPeCCNL5ay0WwXuMKaa4QV7d_TexfB7oJTrrk2OdjvbUxhSjUIalKgVjOjb_9DbMMR-vG6kEJUx6kEoj5SLIaVITX0X287GfS2gPtRRP9RRH-qoT3WMoTcn9bDtyP-L_P3_CLw-Ai0RPTKWqjQIeA8Q-IzY</recordid><startdate>20241101</startdate><enddate>20241101</enddate><creator>Shan, Chunjie</creator><creator>Zhang, Yidan</creator><creator>Liu, Chunrui</creator><creator>Jin, Zhibin</creator><creator>Cheng, Hanlin</creator><creator>Chen, Yidi</creator><creator>Yao, Jing</creator><creator>Luo, Shouhua</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-7376-7390</orcidid><orcidid>https://orcid.org/0009-0007-1179-3674</orcidid><orcidid>https://orcid.org/0000-0002-3307-1652</orcidid></search><sort><creationdate>20241101</creationdate><title>LSMD: Long-Short Memory-Based Detection Network for Carotid Artery Detection in B-Mode Ultrasound Video Streams</title><author>Shan, Chunjie ; Zhang, Yidan ; Liu, Chunrui ; Jin, Zhibin ; Cheng, Hanlin ; Chen, Yidi ; Yao, Jing ; Luo, Shouhua</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c233t-3cce131d94c11b23e30d6f00958b22fa01508c8762d818274ca2ab40cb40c8963</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Anatomical structure</topic><topic>Anatomy</topic><topic>Annotations</topic><topic>Atherosclerosis</topic><topic>Carotid arteries</topic><topic>Carotid artery</topic><topic>Computer memory</topic><topic>detection network</topic><topic>Edge computing</topic><topic>Frequency control</topic><topic>Image enhancement</topic><topic>Inference</topic><topic>long-short memory-based</topic><topic>Medical imaging</topic><topic>Object detection</topic><topic>Performance evaluation</topic><topic>Physicians</topic><topic>Real time</topic><topic>Real-time systems</topic><topic>Solid state devices</topic><topic>Streaming media</topic><topic>Streams</topic><topic>Ultrasonic imaging</topic><topic>ultrasound video streams</topic><topic>Video data</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shan, Chunjie</creatorcontrib><creatorcontrib>Zhang, Yidan</creatorcontrib><creatorcontrib>Liu, Chunrui</creatorcontrib><creatorcontrib>Jin, Zhibin</creatorcontrib><creatorcontrib>Cheng, Hanlin</creatorcontrib><creatorcontrib>Chen, Yidi</creatorcontrib><creatorcontrib>Yao, Jing</creatorcontrib><creatorcontrib>Luo, Shouhua</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on ultrasonics, ferroelectrics, and frequency control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Shan, Chunjie</au><au>Zhang, Yidan</au><au>Liu, Chunrui</au><au>Jin, Zhibin</au><au>Cheng, Hanlin</au><au>Chen, Yidi</au><au>Yao, Jing</au><au>Luo, Shouhua</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>LSMD: Long-Short Memory-Based Detection Network for Carotid Artery Detection in B-Mode Ultrasound Video Streams</atitle><jtitle>IEEE transactions on ultrasonics, ferroelectrics, and frequency control</jtitle><stitle>T-UFFC</stitle><addtitle>IEEE Trans Ultrason Ferroelectr Freq Control</addtitle><date>2024-11-01</date><risdate>2024</risdate><volume>71</volume><issue>11</issue><spage>1464</spage><epage>1477</epage><pages>1464-1477</pages><issn>0885-3010</issn><issn>1525-8955</issn><eissn>1525-8955</eissn><coden>ITUCER</coden><abstract><![CDATA[Carotid atherosclerotic plaques are a major complication associated with type II diabetes, and carotid ultrasound is commonly used for diagnosing carotid vascular disease. In primary hospitals, less experienced ultrasound physicians often struggle to consistently capture standard carotid images and identify plaques. To address this issue, we propose a novel approach, the long-short memory-based detection (LSMD) network, for carotid artery detection in ultrasound video streams, facilitating the identification and localization of critical anatomical structures and plaques. This approach models short- and long-distance spatiotemporal features through short-term temporal aggregation (STA) and long-term temporal aggregation (LTA) modules, effectively expanding the temporal receptive field with minimal delay and enhancing the detection efficiency of carotid anatomy and plaques. Specifically, we introduce memory buffers with a dynamic updating strategy to ensure extensive temporal receptive field coverage while minimizing memory and computation costs. The proposed model was trained on 80 carotid ultrasound videos and evaluated on 50, with all videos annotated by physicians for carotid anatomies and plaques. The trained LSMD was evaluated for performance on the validation and test sets using the single-frame image-based single shot multibox detector (SSD) algorithm as a baseline. The results show that the precision, recall, average precision (AP) at <inline-formula> <tex-math notation="LaTeX">\text {IoU}={0.50} </tex-math></inline-formula> (<inline-formula> <tex-math notation="LaTeX">\text {AP}_{{50}} </tex-math></inline-formula>), and mean AP (mAP) are 6.83%, 12.29%, 11.23%, and 13.21% higher than the baseline (<inline-formula> <tex-math notation="LaTeX">{p}\lt {0.001} </tex-math></inline-formula>), respectively, while the model's inference latency reaches 6.97 ms on a desktop-level GPU (NVIDIA RTX 3090Ti) and 29.69 ms on an edge computing device (Jetson Orin Nano). These findings demonstrate that LSMD can accurately localize carotid anatomy and plaques with real-time inference, indicating its potential for enhancing diagnostic accuracy in clinical practice.]]></abstract><cop>United States</cop><pub>IEEE</pub><pmid>39514357</pmid><doi>10.1109/TUFFC.2024.3494019</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-7376-7390</orcidid><orcidid>https://orcid.org/0009-0007-1179-3674</orcidid><orcidid>https://orcid.org/0000-0002-3307-1652</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0885-3010
ispartof IEEE transactions on ultrasonics, ferroelectrics, and frequency control, 2024-11, Vol.71 (11), p.1464-1477
issn 0885-3010
1525-8955
1525-8955
language eng
recordid cdi_proquest_miscellaneous_3128323540
source IEEE Electronic Library (IEL)
subjects Accuracy
Algorithms
Anatomical structure
Anatomy
Annotations
Atherosclerosis
Carotid arteries
Carotid artery
Computer memory
detection network
Edge computing
Frequency control
Image enhancement
Inference
long-short memory-based
Medical imaging
Object detection
Performance evaluation
Physicians
Real time
Real-time systems
Solid state devices
Streaming media
Streams
Ultrasonic imaging
ultrasound video streams
Video data
title LSMD: Long-Short Memory-Based Detection Network for Carotid Artery Detection in B-Mode Ultrasound Video Streams
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T21%3A38%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=LSMD:%20Long-Short%20Memory-Based%20Detection%20Network%20for%20Carotid%20Artery%20Detection%20in%20B-Mode%20Ultrasound%20Video%20Streams&rft.jtitle=IEEE%20transactions%20on%20ultrasonics,%20ferroelectrics,%20and%20frequency%20control&rft.au=Shan,%20Chunjie&rft.date=2024-11-01&rft.volume=71&rft.issue=11&rft.spage=1464&rft.epage=1477&rft.pages=1464-1477&rft.issn=0885-3010&rft.eissn=1525-8955&rft.coden=ITUCER&rft_id=info:doi/10.1109/TUFFC.2024.3494019&rft_dat=%3Cproquest_RIE%3E3128323540%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3133488496&rft_id=info:pmid/39514357&rft_ieee_id=10747830&rfr_iscdi=true