Time-dependent corrosion behavior of EH36 steel caused by Pseudomonas aeruginosa based on big data monitoring technology
Marine microbial corrosion poses a significant threat to the safe service of marine engineering equipment. Previous studies have often failed to thoroughly analyze the continuous and prolonged microbial corrosion process, resulting in an incomplete understanding of microbial corrosion mechanisms inv...
Gespeichert in:
Veröffentlicht in: | Colloids and surfaces, B, Biointerfaces B, Biointerfaces, 2025-01, Vol.245, p.114349, Article 114349 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 114349 |
container_title | Colloids and surfaces, B, Biointerfaces |
container_volume | 245 |
creator | Lu, Shihang Xue, Nianting Gao, Mingxu Chen, Shiqiang Zhu, Renzheng Wang, Xinyu Liu, Guangzhou Dou, Wenwen |
description | Marine microbial corrosion poses a significant threat to the safe service of marine engineering equipment. Previous studies have often failed to thoroughly analyze the continuous and prolonged microbial corrosion process, resulting in an incomplete understanding of microbial corrosion mechanisms involved at various stages and the development of ineffective control strategies. This study employed a corrosion big data online real-time monitoring technique to investigate the time-dependent corrosion behavior of EH36 steel caused by Pseudomonas aeruginosa in aerobic environments over a 30-d incubation period. It was found that P. aeruginosa accelerated the corrosion of EH36 steel in the early stages by enhancing the cathodic oxygen reduction process. As oxygen levels declined, P. aeruginosa transitioned from aerobic to anaerobic respiration, promoting corrosion through biocatalytic nitrate reduction. In the later stages, the reduction in sessile cell counts, extreme low oxygen concentration, and dense surface film increased the charge transfer and film resistances, ultimately leading to corrosion inhibition. The weight loss and electrochemical data confirmed the effectiveness of the big data monitoring technique in investigating microbial corrosion, which provides new approaches for diagnosing and preventing microbial corrosion.
•P. aeruginosa accelerates aerobic corrosion by enhancing oxygen reduction.•P. aeruginosa promotes anaerobic corrosion through catalyzing nitrate reduction.•Lower DO concentrations and dense surface films inhibit corrosion in later stages.•The results of corrosion big data monitoring corroborate the weight loss data. |
doi_str_mv | 10.1016/j.colsurfb.2024.114349 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3128322489</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0927776524006088</els_id><sourcerecordid>3128322489</sourcerecordid><originalsourceid>FETCH-LOGICAL-c278t-193ee68826ec3739dadd38afb51e375b85782234205316df25dab55cb2012f4b3</originalsourceid><addsrcrecordid>eNqNkctuFDEQRS0EIkPgFyIv2fTgt907UJQQpEiwCGvLj-qJR932YHdHzN_To0nYwqoWdaqudA9CV5RsKaHq034bytiWOvgtI0xsKRVc9K_QhhrNO8GVfo02pGe601rJC_SutT0hK0n1W3TBe0lFz_gG_X5IE3QRDpAj5BmHUmtpqWTs4dE9pVJxGfDNHVe4zQAjDm5pELE_4h8Nllimkl3DDuqyS7k0h7077U8P0g5HNzu8ImkuNeUdniE85jKW3fE9ejO4scGH53mJft7ePFzfdfffv367_nLfBabN3NGeAyhjmILANe-ji5EbN3hJgWvpjdSGMS4YkZyqODAZnZcyeEYoG4Tnl-jj-e-hll8LtNlOqQUYR5ehLM1yKgWTVEn-HygznDFh-hVVZzSsbbUKgz3UNLl6tJTYkyC7ty-C7EmQPQtaD6-eMxY_Qfx79mJkBT6fAVhLeUpQbQsJcoCYKoTZxpL-lfEHn1al0w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3128322489</pqid></control><display><type>article</type><title>Time-dependent corrosion behavior of EH36 steel caused by Pseudomonas aeruginosa based on big data monitoring technology</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Lu, Shihang ; Xue, Nianting ; Gao, Mingxu ; Chen, Shiqiang ; Zhu, Renzheng ; Wang, Xinyu ; Liu, Guangzhou ; Dou, Wenwen</creator><creatorcontrib>Lu, Shihang ; Xue, Nianting ; Gao, Mingxu ; Chen, Shiqiang ; Zhu, Renzheng ; Wang, Xinyu ; Liu, Guangzhou ; Dou, Wenwen</creatorcontrib><description>Marine microbial corrosion poses a significant threat to the safe service of marine engineering equipment. Previous studies have often failed to thoroughly analyze the continuous and prolonged microbial corrosion process, resulting in an incomplete understanding of microbial corrosion mechanisms involved at various stages and the development of ineffective control strategies. This study employed a corrosion big data online real-time monitoring technique to investigate the time-dependent corrosion behavior of EH36 steel caused by Pseudomonas aeruginosa in aerobic environments over a 30-d incubation period. It was found that P. aeruginosa accelerated the corrosion of EH36 steel in the early stages by enhancing the cathodic oxygen reduction process. As oxygen levels declined, P. aeruginosa transitioned from aerobic to anaerobic respiration, promoting corrosion through biocatalytic nitrate reduction. In the later stages, the reduction in sessile cell counts, extreme low oxygen concentration, and dense surface film increased the charge transfer and film resistances, ultimately leading to corrosion inhibition. The weight loss and electrochemical data confirmed the effectiveness of the big data monitoring technique in investigating microbial corrosion, which provides new approaches for diagnosing and preventing microbial corrosion.
•P. aeruginosa accelerates aerobic corrosion by enhancing oxygen reduction.•P. aeruginosa promotes anaerobic corrosion through catalyzing nitrate reduction.•Lower DO concentrations and dense surface films inhibit corrosion in later stages.•The results of corrosion big data monitoring corroborate the weight loss data.</description><identifier>ISSN: 0927-7765</identifier><identifier>ISSN: 1873-4367</identifier><identifier>EISSN: 1873-4367</identifier><identifier>DOI: 10.1016/j.colsurfb.2024.114349</identifier><identifier>PMID: 39514923</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Aerobic environment ; anaerobiosis ; Big data ; Biofilms ; Corrosion ; EH36 steel ; Electrochemical Techniques ; electrochemistry ; Microbial corrosion ; nitrate reduction ; Oxidation-Reduction ; oxygen ; Oxygen - chemistry ; Oxygen - metabolism ; Pseudomonas aeruginosa ; steel ; Steel - chemistry ; Surface Properties ; Time Factors ; weight loss</subject><ispartof>Colloids and surfaces, B, Biointerfaces, 2025-01, Vol.245, p.114349, Article 114349</ispartof><rights>2024 Elsevier B.V.</rights><rights>Copyright © 2024 Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c278t-193ee68826ec3739dadd38afb51e375b85782234205316df25dab55cb2012f4b3</cites><orcidid>0000-0002-8897-4808</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.colsurfb.2024.114349$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,45974</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39514923$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lu, Shihang</creatorcontrib><creatorcontrib>Xue, Nianting</creatorcontrib><creatorcontrib>Gao, Mingxu</creatorcontrib><creatorcontrib>Chen, Shiqiang</creatorcontrib><creatorcontrib>Zhu, Renzheng</creatorcontrib><creatorcontrib>Wang, Xinyu</creatorcontrib><creatorcontrib>Liu, Guangzhou</creatorcontrib><creatorcontrib>Dou, Wenwen</creatorcontrib><title>Time-dependent corrosion behavior of EH36 steel caused by Pseudomonas aeruginosa based on big data monitoring technology</title><title>Colloids and surfaces, B, Biointerfaces</title><addtitle>Colloids Surf B Biointerfaces</addtitle><description>Marine microbial corrosion poses a significant threat to the safe service of marine engineering equipment. Previous studies have often failed to thoroughly analyze the continuous and prolonged microbial corrosion process, resulting in an incomplete understanding of microbial corrosion mechanisms involved at various stages and the development of ineffective control strategies. This study employed a corrosion big data online real-time monitoring technique to investigate the time-dependent corrosion behavior of EH36 steel caused by Pseudomonas aeruginosa in aerobic environments over a 30-d incubation period. It was found that P. aeruginosa accelerated the corrosion of EH36 steel in the early stages by enhancing the cathodic oxygen reduction process. As oxygen levels declined, P. aeruginosa transitioned from aerobic to anaerobic respiration, promoting corrosion through biocatalytic nitrate reduction. In the later stages, the reduction in sessile cell counts, extreme low oxygen concentration, and dense surface film increased the charge transfer and film resistances, ultimately leading to corrosion inhibition. The weight loss and electrochemical data confirmed the effectiveness of the big data monitoring technique in investigating microbial corrosion, which provides new approaches for diagnosing and preventing microbial corrosion.
•P. aeruginosa accelerates aerobic corrosion by enhancing oxygen reduction.•P. aeruginosa promotes anaerobic corrosion through catalyzing nitrate reduction.•Lower DO concentrations and dense surface films inhibit corrosion in later stages.•The results of corrosion big data monitoring corroborate the weight loss data.</description><subject>Aerobic environment</subject><subject>anaerobiosis</subject><subject>Big data</subject><subject>Biofilms</subject><subject>Corrosion</subject><subject>EH36 steel</subject><subject>Electrochemical Techniques</subject><subject>electrochemistry</subject><subject>Microbial corrosion</subject><subject>nitrate reduction</subject><subject>Oxidation-Reduction</subject><subject>oxygen</subject><subject>Oxygen - chemistry</subject><subject>Oxygen - metabolism</subject><subject>Pseudomonas aeruginosa</subject><subject>steel</subject><subject>Steel - chemistry</subject><subject>Surface Properties</subject><subject>Time Factors</subject><subject>weight loss</subject><issn>0927-7765</issn><issn>1873-4367</issn><issn>1873-4367</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkctuFDEQRS0EIkPgFyIv2fTgt907UJQQpEiwCGvLj-qJR932YHdHzN_To0nYwqoWdaqudA9CV5RsKaHq034bytiWOvgtI0xsKRVc9K_QhhrNO8GVfo02pGe601rJC_SutT0hK0n1W3TBe0lFz_gG_X5IE3QRDpAj5BmHUmtpqWTs4dE9pVJxGfDNHVe4zQAjDm5pELE_4h8Nllimkl3DDuqyS7k0h7077U8P0g5HNzu8ImkuNeUdniE85jKW3fE9ejO4scGH53mJft7ePFzfdfffv367_nLfBabN3NGeAyhjmILANe-ji5EbN3hJgWvpjdSGMS4YkZyqODAZnZcyeEYoG4Tnl-jj-e-hll8LtNlOqQUYR5ehLM1yKgWTVEn-HygznDFh-hVVZzSsbbUKgz3UNLl6tJTYkyC7ty-C7EmQPQtaD6-eMxY_Qfx79mJkBT6fAVhLeUpQbQsJcoCYKoTZxpL-lfEHn1al0w</recordid><startdate>202501</startdate><enddate>202501</enddate><creator>Lu, Shihang</creator><creator>Xue, Nianting</creator><creator>Gao, Mingxu</creator><creator>Chen, Shiqiang</creator><creator>Zhu, Renzheng</creator><creator>Wang, Xinyu</creator><creator>Liu, Guangzhou</creator><creator>Dou, Wenwen</creator><general>Elsevier B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><orcidid>https://orcid.org/0000-0002-8897-4808</orcidid></search><sort><creationdate>202501</creationdate><title>Time-dependent corrosion behavior of EH36 steel caused by Pseudomonas aeruginosa based on big data monitoring technology</title><author>Lu, Shihang ; Xue, Nianting ; Gao, Mingxu ; Chen, Shiqiang ; Zhu, Renzheng ; Wang, Xinyu ; Liu, Guangzhou ; Dou, Wenwen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c278t-193ee68826ec3739dadd38afb51e375b85782234205316df25dab55cb2012f4b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>Aerobic environment</topic><topic>anaerobiosis</topic><topic>Big data</topic><topic>Biofilms</topic><topic>Corrosion</topic><topic>EH36 steel</topic><topic>Electrochemical Techniques</topic><topic>electrochemistry</topic><topic>Microbial corrosion</topic><topic>nitrate reduction</topic><topic>Oxidation-Reduction</topic><topic>oxygen</topic><topic>Oxygen - chemistry</topic><topic>Oxygen - metabolism</topic><topic>Pseudomonas aeruginosa</topic><topic>steel</topic><topic>Steel - chemistry</topic><topic>Surface Properties</topic><topic>Time Factors</topic><topic>weight loss</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lu, Shihang</creatorcontrib><creatorcontrib>Xue, Nianting</creatorcontrib><creatorcontrib>Gao, Mingxu</creatorcontrib><creatorcontrib>Chen, Shiqiang</creatorcontrib><creatorcontrib>Zhu, Renzheng</creatorcontrib><creatorcontrib>Wang, Xinyu</creatorcontrib><creatorcontrib>Liu, Guangzhou</creatorcontrib><creatorcontrib>Dou, Wenwen</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Colloids and surfaces, B, Biointerfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lu, Shihang</au><au>Xue, Nianting</au><au>Gao, Mingxu</au><au>Chen, Shiqiang</au><au>Zhu, Renzheng</au><au>Wang, Xinyu</au><au>Liu, Guangzhou</au><au>Dou, Wenwen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Time-dependent corrosion behavior of EH36 steel caused by Pseudomonas aeruginosa based on big data monitoring technology</atitle><jtitle>Colloids and surfaces, B, Biointerfaces</jtitle><addtitle>Colloids Surf B Biointerfaces</addtitle><date>2025-01</date><risdate>2025</risdate><volume>245</volume><spage>114349</spage><pages>114349-</pages><artnum>114349</artnum><issn>0927-7765</issn><issn>1873-4367</issn><eissn>1873-4367</eissn><abstract>Marine microbial corrosion poses a significant threat to the safe service of marine engineering equipment. Previous studies have often failed to thoroughly analyze the continuous and prolonged microbial corrosion process, resulting in an incomplete understanding of microbial corrosion mechanisms involved at various stages and the development of ineffective control strategies. This study employed a corrosion big data online real-time monitoring technique to investigate the time-dependent corrosion behavior of EH36 steel caused by Pseudomonas aeruginosa in aerobic environments over a 30-d incubation period. It was found that P. aeruginosa accelerated the corrosion of EH36 steel in the early stages by enhancing the cathodic oxygen reduction process. As oxygen levels declined, P. aeruginosa transitioned from aerobic to anaerobic respiration, promoting corrosion through biocatalytic nitrate reduction. In the later stages, the reduction in sessile cell counts, extreme low oxygen concentration, and dense surface film increased the charge transfer and film resistances, ultimately leading to corrosion inhibition. The weight loss and electrochemical data confirmed the effectiveness of the big data monitoring technique in investigating microbial corrosion, which provides new approaches for diagnosing and preventing microbial corrosion.
•P. aeruginosa accelerates aerobic corrosion by enhancing oxygen reduction.•P. aeruginosa promotes anaerobic corrosion through catalyzing nitrate reduction.•Lower DO concentrations and dense surface films inhibit corrosion in later stages.•The results of corrosion big data monitoring corroborate the weight loss data.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>39514923</pmid><doi>10.1016/j.colsurfb.2024.114349</doi><orcidid>https://orcid.org/0000-0002-8897-4808</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0927-7765 |
ispartof | Colloids and surfaces, B, Biointerfaces, 2025-01, Vol.245, p.114349, Article 114349 |
issn | 0927-7765 1873-4367 1873-4367 |
language | eng |
recordid | cdi_proquest_miscellaneous_3128322489 |
source | MEDLINE; Elsevier ScienceDirect Journals |
subjects | Aerobic environment anaerobiosis Big data Biofilms Corrosion EH36 steel Electrochemical Techniques electrochemistry Microbial corrosion nitrate reduction Oxidation-Reduction oxygen Oxygen - chemistry Oxygen - metabolism Pseudomonas aeruginosa steel Steel - chemistry Surface Properties Time Factors weight loss |
title | Time-dependent corrosion behavior of EH36 steel caused by Pseudomonas aeruginosa based on big data monitoring technology |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T08%3A29%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Time-dependent%20corrosion%20behavior%20of%20EH36%20steel%20caused%20by%20Pseudomonas%20aeruginosa%20based%20on%20big%20data%20monitoring%20technology&rft.jtitle=Colloids%20and%20surfaces,%20B,%20Biointerfaces&rft.au=Lu,%20Shihang&rft.date=2025-01&rft.volume=245&rft.spage=114349&rft.pages=114349-&rft.artnum=114349&rft.issn=0927-7765&rft.eissn=1873-4367&rft_id=info:doi/10.1016/j.colsurfb.2024.114349&rft_dat=%3Cproquest_cross%3E3128322489%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3128322489&rft_id=info:pmid/39514923&rft_els_id=S0927776524006088&rfr_iscdi=true |