Time-dependent corrosion behavior of EH36 steel caused by Pseudomonas aeruginosa based on big data monitoring technology

Marine microbial corrosion poses a significant threat to the safe service of marine engineering equipment. Previous studies have often failed to thoroughly analyze the continuous and prolonged microbial corrosion process, resulting in an incomplete understanding of microbial corrosion mechanisms inv...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Colloids and surfaces, B, Biointerfaces B, Biointerfaces, 2025-01, Vol.245, p.114349, Article 114349
Hauptverfasser: Lu, Shihang, Xue, Nianting, Gao, Mingxu, Chen, Shiqiang, Zhu, Renzheng, Wang, Xinyu, Liu, Guangzhou, Dou, Wenwen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 114349
container_title Colloids and surfaces, B, Biointerfaces
container_volume 245
creator Lu, Shihang
Xue, Nianting
Gao, Mingxu
Chen, Shiqiang
Zhu, Renzheng
Wang, Xinyu
Liu, Guangzhou
Dou, Wenwen
description Marine microbial corrosion poses a significant threat to the safe service of marine engineering equipment. Previous studies have often failed to thoroughly analyze the continuous and prolonged microbial corrosion process, resulting in an incomplete understanding of microbial corrosion mechanisms involved at various stages and the development of ineffective control strategies. This study employed a corrosion big data online real-time monitoring technique to investigate the time-dependent corrosion behavior of EH36 steel caused by Pseudomonas aeruginosa in aerobic environments over a 30-d incubation period. It was found that P. aeruginosa accelerated the corrosion of EH36 steel in the early stages by enhancing the cathodic oxygen reduction process. As oxygen levels declined, P. aeruginosa transitioned from aerobic to anaerobic respiration, promoting corrosion through biocatalytic nitrate reduction. In the later stages, the reduction in sessile cell counts, extreme low oxygen concentration, and dense surface film increased the charge transfer and film resistances, ultimately leading to corrosion inhibition. The weight loss and electrochemical data confirmed the effectiveness of the big data monitoring technique in investigating microbial corrosion, which provides new approaches for diagnosing and preventing microbial corrosion. •P. aeruginosa accelerates aerobic corrosion by enhancing oxygen reduction.•P. aeruginosa promotes anaerobic corrosion through catalyzing nitrate reduction.•Lower DO concentrations and dense surface films inhibit corrosion in later stages.•The results of corrosion big data monitoring corroborate the weight loss data.
doi_str_mv 10.1016/j.colsurfb.2024.114349
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3128322489</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0927776524006088</els_id><sourcerecordid>3128322489</sourcerecordid><originalsourceid>FETCH-LOGICAL-c278t-193ee68826ec3739dadd38afb51e375b85782234205316df25dab55cb2012f4b3</originalsourceid><addsrcrecordid>eNqNkctuFDEQRS0EIkPgFyIv2fTgt907UJQQpEiwCGvLj-qJR932YHdHzN_To0nYwqoWdaqudA9CV5RsKaHq034bytiWOvgtI0xsKRVc9K_QhhrNO8GVfo02pGe601rJC_SutT0hK0n1W3TBe0lFz_gG_X5IE3QRDpAj5BmHUmtpqWTs4dE9pVJxGfDNHVe4zQAjDm5pELE_4h8Nllimkl3DDuqyS7k0h7077U8P0g5HNzu8ImkuNeUdniE85jKW3fE9ejO4scGH53mJft7ePFzfdfffv367_nLfBabN3NGeAyhjmILANe-ji5EbN3hJgWvpjdSGMS4YkZyqODAZnZcyeEYoG4Tnl-jj-e-hll8LtNlOqQUYR5ehLM1yKgWTVEn-HygznDFh-hVVZzSsbbUKgz3UNLl6tJTYkyC7ty-C7EmQPQtaD6-eMxY_Qfx79mJkBT6fAVhLeUpQbQsJcoCYKoTZxpL-lfEHn1al0w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3128322489</pqid></control><display><type>article</type><title>Time-dependent corrosion behavior of EH36 steel caused by Pseudomonas aeruginosa based on big data monitoring technology</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Lu, Shihang ; Xue, Nianting ; Gao, Mingxu ; Chen, Shiqiang ; Zhu, Renzheng ; Wang, Xinyu ; Liu, Guangzhou ; Dou, Wenwen</creator><creatorcontrib>Lu, Shihang ; Xue, Nianting ; Gao, Mingxu ; Chen, Shiqiang ; Zhu, Renzheng ; Wang, Xinyu ; Liu, Guangzhou ; Dou, Wenwen</creatorcontrib><description>Marine microbial corrosion poses a significant threat to the safe service of marine engineering equipment. Previous studies have often failed to thoroughly analyze the continuous and prolonged microbial corrosion process, resulting in an incomplete understanding of microbial corrosion mechanisms involved at various stages and the development of ineffective control strategies. This study employed a corrosion big data online real-time monitoring technique to investigate the time-dependent corrosion behavior of EH36 steel caused by Pseudomonas aeruginosa in aerobic environments over a 30-d incubation period. It was found that P. aeruginosa accelerated the corrosion of EH36 steel in the early stages by enhancing the cathodic oxygen reduction process. As oxygen levels declined, P. aeruginosa transitioned from aerobic to anaerobic respiration, promoting corrosion through biocatalytic nitrate reduction. In the later stages, the reduction in sessile cell counts, extreme low oxygen concentration, and dense surface film increased the charge transfer and film resistances, ultimately leading to corrosion inhibition. The weight loss and electrochemical data confirmed the effectiveness of the big data monitoring technique in investigating microbial corrosion, which provides new approaches for diagnosing and preventing microbial corrosion. •P. aeruginosa accelerates aerobic corrosion by enhancing oxygen reduction.•P. aeruginosa promotes anaerobic corrosion through catalyzing nitrate reduction.•Lower DO concentrations and dense surface films inhibit corrosion in later stages.•The results of corrosion big data monitoring corroborate the weight loss data.</description><identifier>ISSN: 0927-7765</identifier><identifier>ISSN: 1873-4367</identifier><identifier>EISSN: 1873-4367</identifier><identifier>DOI: 10.1016/j.colsurfb.2024.114349</identifier><identifier>PMID: 39514923</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Aerobic environment ; anaerobiosis ; Big data ; Biofilms ; Corrosion ; EH36 steel ; Electrochemical Techniques ; electrochemistry ; Microbial corrosion ; nitrate reduction ; Oxidation-Reduction ; oxygen ; Oxygen - chemistry ; Oxygen - metabolism ; Pseudomonas aeruginosa ; steel ; Steel - chemistry ; Surface Properties ; Time Factors ; weight loss</subject><ispartof>Colloids and surfaces, B, Biointerfaces, 2025-01, Vol.245, p.114349, Article 114349</ispartof><rights>2024 Elsevier B.V.</rights><rights>Copyright © 2024 Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c278t-193ee68826ec3739dadd38afb51e375b85782234205316df25dab55cb2012f4b3</cites><orcidid>0000-0002-8897-4808</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.colsurfb.2024.114349$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,45974</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39514923$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lu, Shihang</creatorcontrib><creatorcontrib>Xue, Nianting</creatorcontrib><creatorcontrib>Gao, Mingxu</creatorcontrib><creatorcontrib>Chen, Shiqiang</creatorcontrib><creatorcontrib>Zhu, Renzheng</creatorcontrib><creatorcontrib>Wang, Xinyu</creatorcontrib><creatorcontrib>Liu, Guangzhou</creatorcontrib><creatorcontrib>Dou, Wenwen</creatorcontrib><title>Time-dependent corrosion behavior of EH36 steel caused by Pseudomonas aeruginosa based on big data monitoring technology</title><title>Colloids and surfaces, B, Biointerfaces</title><addtitle>Colloids Surf B Biointerfaces</addtitle><description>Marine microbial corrosion poses a significant threat to the safe service of marine engineering equipment. Previous studies have often failed to thoroughly analyze the continuous and prolonged microbial corrosion process, resulting in an incomplete understanding of microbial corrosion mechanisms involved at various stages and the development of ineffective control strategies. This study employed a corrosion big data online real-time monitoring technique to investigate the time-dependent corrosion behavior of EH36 steel caused by Pseudomonas aeruginosa in aerobic environments over a 30-d incubation period. It was found that P. aeruginosa accelerated the corrosion of EH36 steel in the early stages by enhancing the cathodic oxygen reduction process. As oxygen levels declined, P. aeruginosa transitioned from aerobic to anaerobic respiration, promoting corrosion through biocatalytic nitrate reduction. In the later stages, the reduction in sessile cell counts, extreme low oxygen concentration, and dense surface film increased the charge transfer and film resistances, ultimately leading to corrosion inhibition. The weight loss and electrochemical data confirmed the effectiveness of the big data monitoring technique in investigating microbial corrosion, which provides new approaches for diagnosing and preventing microbial corrosion. •P. aeruginosa accelerates aerobic corrosion by enhancing oxygen reduction.•P. aeruginosa promotes anaerobic corrosion through catalyzing nitrate reduction.•Lower DO concentrations and dense surface films inhibit corrosion in later stages.•The results of corrosion big data monitoring corroborate the weight loss data.</description><subject>Aerobic environment</subject><subject>anaerobiosis</subject><subject>Big data</subject><subject>Biofilms</subject><subject>Corrosion</subject><subject>EH36 steel</subject><subject>Electrochemical Techniques</subject><subject>electrochemistry</subject><subject>Microbial corrosion</subject><subject>nitrate reduction</subject><subject>Oxidation-Reduction</subject><subject>oxygen</subject><subject>Oxygen - chemistry</subject><subject>Oxygen - metabolism</subject><subject>Pseudomonas aeruginosa</subject><subject>steel</subject><subject>Steel - chemistry</subject><subject>Surface Properties</subject><subject>Time Factors</subject><subject>weight loss</subject><issn>0927-7765</issn><issn>1873-4367</issn><issn>1873-4367</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkctuFDEQRS0EIkPgFyIv2fTgt907UJQQpEiwCGvLj-qJR932YHdHzN_To0nYwqoWdaqudA9CV5RsKaHq034bytiWOvgtI0xsKRVc9K_QhhrNO8GVfo02pGe601rJC_SutT0hK0n1W3TBe0lFz_gG_X5IE3QRDpAj5BmHUmtpqWTs4dE9pVJxGfDNHVe4zQAjDm5pELE_4h8Nllimkl3DDuqyS7k0h7077U8P0g5HNzu8ImkuNeUdniE85jKW3fE9ejO4scGH53mJft7ePFzfdfffv367_nLfBabN3NGeAyhjmILANe-ji5EbN3hJgWvpjdSGMS4YkZyqODAZnZcyeEYoG4Tnl-jj-e-hll8LtNlOqQUYR5ehLM1yKgWTVEn-HygznDFh-hVVZzSsbbUKgz3UNLl6tJTYkyC7ty-C7EmQPQtaD6-eMxY_Qfx79mJkBT6fAVhLeUpQbQsJcoCYKoTZxpL-lfEHn1al0w</recordid><startdate>202501</startdate><enddate>202501</enddate><creator>Lu, Shihang</creator><creator>Xue, Nianting</creator><creator>Gao, Mingxu</creator><creator>Chen, Shiqiang</creator><creator>Zhu, Renzheng</creator><creator>Wang, Xinyu</creator><creator>Liu, Guangzhou</creator><creator>Dou, Wenwen</creator><general>Elsevier B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><orcidid>https://orcid.org/0000-0002-8897-4808</orcidid></search><sort><creationdate>202501</creationdate><title>Time-dependent corrosion behavior of EH36 steel caused by Pseudomonas aeruginosa based on big data monitoring technology</title><author>Lu, Shihang ; Xue, Nianting ; Gao, Mingxu ; Chen, Shiqiang ; Zhu, Renzheng ; Wang, Xinyu ; Liu, Guangzhou ; Dou, Wenwen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c278t-193ee68826ec3739dadd38afb51e375b85782234205316df25dab55cb2012f4b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>Aerobic environment</topic><topic>anaerobiosis</topic><topic>Big data</topic><topic>Biofilms</topic><topic>Corrosion</topic><topic>EH36 steel</topic><topic>Electrochemical Techniques</topic><topic>electrochemistry</topic><topic>Microbial corrosion</topic><topic>nitrate reduction</topic><topic>Oxidation-Reduction</topic><topic>oxygen</topic><topic>Oxygen - chemistry</topic><topic>Oxygen - metabolism</topic><topic>Pseudomonas aeruginosa</topic><topic>steel</topic><topic>Steel - chemistry</topic><topic>Surface Properties</topic><topic>Time Factors</topic><topic>weight loss</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lu, Shihang</creatorcontrib><creatorcontrib>Xue, Nianting</creatorcontrib><creatorcontrib>Gao, Mingxu</creatorcontrib><creatorcontrib>Chen, Shiqiang</creatorcontrib><creatorcontrib>Zhu, Renzheng</creatorcontrib><creatorcontrib>Wang, Xinyu</creatorcontrib><creatorcontrib>Liu, Guangzhou</creatorcontrib><creatorcontrib>Dou, Wenwen</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Colloids and surfaces, B, Biointerfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lu, Shihang</au><au>Xue, Nianting</au><au>Gao, Mingxu</au><au>Chen, Shiqiang</au><au>Zhu, Renzheng</au><au>Wang, Xinyu</au><au>Liu, Guangzhou</au><au>Dou, Wenwen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Time-dependent corrosion behavior of EH36 steel caused by Pseudomonas aeruginosa based on big data monitoring technology</atitle><jtitle>Colloids and surfaces, B, Biointerfaces</jtitle><addtitle>Colloids Surf B Biointerfaces</addtitle><date>2025-01</date><risdate>2025</risdate><volume>245</volume><spage>114349</spage><pages>114349-</pages><artnum>114349</artnum><issn>0927-7765</issn><issn>1873-4367</issn><eissn>1873-4367</eissn><abstract>Marine microbial corrosion poses a significant threat to the safe service of marine engineering equipment. Previous studies have often failed to thoroughly analyze the continuous and prolonged microbial corrosion process, resulting in an incomplete understanding of microbial corrosion mechanisms involved at various stages and the development of ineffective control strategies. This study employed a corrosion big data online real-time monitoring technique to investigate the time-dependent corrosion behavior of EH36 steel caused by Pseudomonas aeruginosa in aerobic environments over a 30-d incubation period. It was found that P. aeruginosa accelerated the corrosion of EH36 steel in the early stages by enhancing the cathodic oxygen reduction process. As oxygen levels declined, P. aeruginosa transitioned from aerobic to anaerobic respiration, promoting corrosion through biocatalytic nitrate reduction. In the later stages, the reduction in sessile cell counts, extreme low oxygen concentration, and dense surface film increased the charge transfer and film resistances, ultimately leading to corrosion inhibition. The weight loss and electrochemical data confirmed the effectiveness of the big data monitoring technique in investigating microbial corrosion, which provides new approaches for diagnosing and preventing microbial corrosion. •P. aeruginosa accelerates aerobic corrosion by enhancing oxygen reduction.•P. aeruginosa promotes anaerobic corrosion through catalyzing nitrate reduction.•Lower DO concentrations and dense surface films inhibit corrosion in later stages.•The results of corrosion big data monitoring corroborate the weight loss data.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>39514923</pmid><doi>10.1016/j.colsurfb.2024.114349</doi><orcidid>https://orcid.org/0000-0002-8897-4808</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0927-7765
ispartof Colloids and surfaces, B, Biointerfaces, 2025-01, Vol.245, p.114349, Article 114349
issn 0927-7765
1873-4367
1873-4367
language eng
recordid cdi_proquest_miscellaneous_3128322489
source MEDLINE; Elsevier ScienceDirect Journals
subjects Aerobic environment
anaerobiosis
Big data
Biofilms
Corrosion
EH36 steel
Electrochemical Techniques
electrochemistry
Microbial corrosion
nitrate reduction
Oxidation-Reduction
oxygen
Oxygen - chemistry
Oxygen - metabolism
Pseudomonas aeruginosa
steel
Steel - chemistry
Surface Properties
Time Factors
weight loss
title Time-dependent corrosion behavior of EH36 steel caused by Pseudomonas aeruginosa based on big data monitoring technology
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T08%3A29%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Time-dependent%20corrosion%20behavior%20of%20EH36%20steel%20caused%20by%20Pseudomonas%20aeruginosa%20based%20on%20big%20data%20monitoring%20technology&rft.jtitle=Colloids%20and%20surfaces,%20B,%20Biointerfaces&rft.au=Lu,%20Shihang&rft.date=2025-01&rft.volume=245&rft.spage=114349&rft.pages=114349-&rft.artnum=114349&rft.issn=0927-7765&rft.eissn=1873-4367&rft_id=info:doi/10.1016/j.colsurfb.2024.114349&rft_dat=%3Cproquest_cross%3E3128322489%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3128322489&rft_id=info:pmid/39514923&rft_els_id=S0927776524006088&rfr_iscdi=true