Equilibria of large random Lotka–Volterra systems with vanishing species: a mathematical approach

Ecosystems with a large number of species are often modelled as Lotka–Volterra dynamical systems built around a large interaction matrix with random part. Under some known conditions, a global equilibrium exists and is unique. In this article, we rigorously study its statistical properties in the la...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mathematical biology 2024-12, Vol.89 (6), p.61, Article 61
Hauptverfasser: Akjouj, Imane, Hachem, Walid, Maïda, Mylène, Najim, Jamal
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 6
container_start_page 61
container_title Journal of mathematical biology
container_volume 89
creator Akjouj, Imane
Hachem, Walid
Maïda, Mylène
Najim, Jamal
description Ecosystems with a large number of species are often modelled as Lotka–Volterra dynamical systems built around a large interaction matrix with random part. Under some known conditions, a global equilibrium exists and is unique. In this article, we rigorously study its statistical properties in the large dimensional regime. Such an equilibrium vector is known to be the solution of a so-called Linear Complementarity Problem. We describe its statistical properties by designing an Approximate Message Passing (AMP) algorithm, a technique that has recently aroused an intense research effort in the fields of statistical physics, machine learning, or communication theory. Interaction matrices based on the Gaussian Orthogonal Ensemble, or following a Wishart distribution are considered. Beyond these models, the AMP approach developed in this article has the potential to describe the statistical properties of equilibria associated to more involved interaction matrix models.
doi_str_mv 10.1007/s00285-024-02155-z
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3128320898</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3128320898</sourcerecordid><originalsourceid>FETCH-LOGICAL-c256t-fc27e9a4c98dd8e39d373588f7325c26557dea4ac7fe68d01d4974fcf1c6e8603</originalsourceid><addsrcrecordid>eNp9kc1OHDEMxyNUBFvgBXqoIvXCZWg-JpOkN4SgRVqJC_QamYxnN3Q-lmQGBCfegTfskzTbpVTiwMH2wT__bflPyCfOjjhj-mtiTBhVMFHm4EoVj1tkxkspCl7y6gOZMclkURkudsnHlG4Y41pZvkN2pVWcWVPOiD-9nUIbrmMAOjS0hbhAGqGvh47Oh_EX_H56_jm0I8YIND2kEbtE78O4pHfQh7QM_YKmFfqA6RsF2sG4xJyCh5bCahUH8Mt9st1Am_Dgpe6Rq7PTy5Mfxfzi-_nJ8bzwQlVj0Xih0ULpralrg9LWUktlTKOlUF5USukaoQSvG6xMzXhdWl02vuG-QlMxuUcON7p57e2EaXRdSB7bFnocpuQkF0YKZqzJ6Jc36M0wxT5ft6bUWk3bTIkN5eOQUsTGrWLoID44ztzaArexwGUL3F8L3GMe-vwiPV13WL-O_Pt5BuQGSLnVLzD-3_2O7B97PpO-</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3125860379</pqid></control><display><type>article</type><title>Equilibria of large random Lotka–Volterra systems with vanishing species: a mathematical approach</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><creator>Akjouj, Imane ; Hachem, Walid ; Maïda, Mylène ; Najim, Jamal</creator><creatorcontrib>Akjouj, Imane ; Hachem, Walid ; Maïda, Mylène ; Najim, Jamal</creatorcontrib><description>Ecosystems with a large number of species are often modelled as Lotka–Volterra dynamical systems built around a large interaction matrix with random part. Under some known conditions, a global equilibrium exists and is unique. In this article, we rigorously study its statistical properties in the large dimensional regime. Such an equilibrium vector is known to be the solution of a so-called Linear Complementarity Problem. We describe its statistical properties by designing an Approximate Message Passing (AMP) algorithm, a technique that has recently aroused an intense research effort in the fields of statistical physics, machine learning, or communication theory. Interaction matrices based on the Gaussian Orthogonal Ensemble, or following a Wishart distribution are considered. Beyond these models, the AMP approach developed in this article has the potential to describe the statistical properties of equilibria associated to more involved interaction matrix models.</description><identifier>ISSN: 0303-6812</identifier><identifier>ISSN: 1432-1416</identifier><identifier>EISSN: 1432-1416</identifier><identifier>DOI: 10.1007/s00285-024-02155-z</identifier><identifier>PMID: 39510984</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Algorithms ; Animals ; Applications of Mathematics ; Communication theory ; Complementarity ; Computer Simulation ; Dynamical systems ; Ecology ; Ecosystem ; Equilibrium ; Linear Models ; Machine learning ; Mathematical and Computational Biology ; Mathematical Concepts ; Mathematical models ; Mathematics ; Mathematics and Statistics ; Message passing ; Models, Biological ; Models, Statistical ; Normal distribution ; Ordinary differential equations ; Population Dynamics - statistics &amp; numerical data ; Statistical analysis ; Statistical models ; Statistical physics</subject><ispartof>Journal of mathematical biology, 2024-12, Vol.89 (6), p.61, Article 61</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>2024. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c256t-fc27e9a4c98dd8e39d373588f7325c26557dea4ac7fe68d01d4974fcf1c6e8603</cites><orcidid>0000-0002-2097-3649</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00285-024-02155-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00285-024-02155-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39510984$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Akjouj, Imane</creatorcontrib><creatorcontrib>Hachem, Walid</creatorcontrib><creatorcontrib>Maïda, Mylène</creatorcontrib><creatorcontrib>Najim, Jamal</creatorcontrib><title>Equilibria of large random Lotka–Volterra systems with vanishing species: a mathematical approach</title><title>Journal of mathematical biology</title><addtitle>J. Math. Biol</addtitle><addtitle>J Math Biol</addtitle><description>Ecosystems with a large number of species are often modelled as Lotka–Volterra dynamical systems built around a large interaction matrix with random part. Under some known conditions, a global equilibrium exists and is unique. In this article, we rigorously study its statistical properties in the large dimensional regime. Such an equilibrium vector is known to be the solution of a so-called Linear Complementarity Problem. We describe its statistical properties by designing an Approximate Message Passing (AMP) algorithm, a technique that has recently aroused an intense research effort in the fields of statistical physics, machine learning, or communication theory. Interaction matrices based on the Gaussian Orthogonal Ensemble, or following a Wishart distribution are considered. Beyond these models, the AMP approach developed in this article has the potential to describe the statistical properties of equilibria associated to more involved interaction matrix models.</description><subject>Algorithms</subject><subject>Animals</subject><subject>Applications of Mathematics</subject><subject>Communication theory</subject><subject>Complementarity</subject><subject>Computer Simulation</subject><subject>Dynamical systems</subject><subject>Ecology</subject><subject>Ecosystem</subject><subject>Equilibrium</subject><subject>Linear Models</subject><subject>Machine learning</subject><subject>Mathematical and Computational Biology</subject><subject>Mathematical Concepts</subject><subject>Mathematical models</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Message passing</subject><subject>Models, Biological</subject><subject>Models, Statistical</subject><subject>Normal distribution</subject><subject>Ordinary differential equations</subject><subject>Population Dynamics - statistics &amp; numerical data</subject><subject>Statistical analysis</subject><subject>Statistical models</subject><subject>Statistical physics</subject><issn>0303-6812</issn><issn>1432-1416</issn><issn>1432-1416</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kc1OHDEMxyNUBFvgBXqoIvXCZWg-JpOkN4SgRVqJC_QamYxnN3Q-lmQGBCfegTfskzTbpVTiwMH2wT__bflPyCfOjjhj-mtiTBhVMFHm4EoVj1tkxkspCl7y6gOZMclkURkudsnHlG4Y41pZvkN2pVWcWVPOiD-9nUIbrmMAOjS0hbhAGqGvh47Oh_EX_H56_jm0I8YIND2kEbtE78O4pHfQh7QM_YKmFfqA6RsF2sG4xJyCh5bCahUH8Mt9st1Am_Dgpe6Rq7PTy5Mfxfzi-_nJ8bzwQlVj0Xih0ULpralrg9LWUktlTKOlUF5USukaoQSvG6xMzXhdWl02vuG-QlMxuUcON7p57e2EaXRdSB7bFnocpuQkF0YKZqzJ6Jc36M0wxT5ft6bUWk3bTIkN5eOQUsTGrWLoID44ztzaArexwGUL3F8L3GMe-vwiPV13WL-O_Pt5BuQGSLnVLzD-3_2O7B97PpO-</recordid><startdate>20241201</startdate><enddate>20241201</enddate><creator>Akjouj, Imane</creator><creator>Hachem, Walid</creator><creator>Maïda, Mylène</creator><creator>Najim, Jamal</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>FR3</scope><scope>H94</scope><scope>JQ2</scope><scope>K9.</scope><scope>M7N</scope><scope>M7Z</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-2097-3649</orcidid></search><sort><creationdate>20241201</creationdate><title>Equilibria of large random Lotka–Volterra systems with vanishing species: a mathematical approach</title><author>Akjouj, Imane ; Hachem, Walid ; Maïda, Mylène ; Najim, Jamal</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c256t-fc27e9a4c98dd8e39d373588f7325c26557dea4ac7fe68d01d4974fcf1c6e8603</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Animals</topic><topic>Applications of Mathematics</topic><topic>Communication theory</topic><topic>Complementarity</topic><topic>Computer Simulation</topic><topic>Dynamical systems</topic><topic>Ecology</topic><topic>Ecosystem</topic><topic>Equilibrium</topic><topic>Linear Models</topic><topic>Machine learning</topic><topic>Mathematical and Computational Biology</topic><topic>Mathematical Concepts</topic><topic>Mathematical models</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Message passing</topic><topic>Models, Biological</topic><topic>Models, Statistical</topic><topic>Normal distribution</topic><topic>Ordinary differential equations</topic><topic>Population Dynamics - statistics &amp; numerical data</topic><topic>Statistical analysis</topic><topic>Statistical models</topic><topic>Statistical physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Akjouj, Imane</creatorcontrib><creatorcontrib>Hachem, Walid</creatorcontrib><creatorcontrib>Maïda, Mylène</creatorcontrib><creatorcontrib>Najim, Jamal</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biochemistry Abstracts 1</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of mathematical biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Akjouj, Imane</au><au>Hachem, Walid</au><au>Maïda, Mylène</au><au>Najim, Jamal</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Equilibria of large random Lotka–Volterra systems with vanishing species: a mathematical approach</atitle><jtitle>Journal of mathematical biology</jtitle><stitle>J. Math. Biol</stitle><addtitle>J Math Biol</addtitle><date>2024-12-01</date><risdate>2024</risdate><volume>89</volume><issue>6</issue><spage>61</spage><pages>61-</pages><artnum>61</artnum><issn>0303-6812</issn><issn>1432-1416</issn><eissn>1432-1416</eissn><abstract>Ecosystems with a large number of species are often modelled as Lotka–Volterra dynamical systems built around a large interaction matrix with random part. Under some known conditions, a global equilibrium exists and is unique. In this article, we rigorously study its statistical properties in the large dimensional regime. Such an equilibrium vector is known to be the solution of a so-called Linear Complementarity Problem. We describe its statistical properties by designing an Approximate Message Passing (AMP) algorithm, a technique that has recently aroused an intense research effort in the fields of statistical physics, machine learning, or communication theory. Interaction matrices based on the Gaussian Orthogonal Ensemble, or following a Wishart distribution are considered. Beyond these models, the AMP approach developed in this article has the potential to describe the statistical properties of equilibria associated to more involved interaction matrix models.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>39510984</pmid><doi>10.1007/s00285-024-02155-z</doi><orcidid>https://orcid.org/0000-0002-2097-3649</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0303-6812
ispartof Journal of mathematical biology, 2024-12, Vol.89 (6), p.61, Article 61
issn 0303-6812
1432-1416
1432-1416
language eng
recordid cdi_proquest_miscellaneous_3128320898
source MEDLINE; Springer Nature - Complete Springer Journals
subjects Algorithms
Animals
Applications of Mathematics
Communication theory
Complementarity
Computer Simulation
Dynamical systems
Ecology
Ecosystem
Equilibrium
Linear Models
Machine learning
Mathematical and Computational Biology
Mathematical Concepts
Mathematical models
Mathematics
Mathematics and Statistics
Message passing
Models, Biological
Models, Statistical
Normal distribution
Ordinary differential equations
Population Dynamics - statistics & numerical data
Statistical analysis
Statistical models
Statistical physics
title Equilibria of large random Lotka–Volterra systems with vanishing species: a mathematical approach
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T08%3A45%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Equilibria%20of%20large%20random%20Lotka%E2%80%93Volterra%20systems%20with%20vanishing%20species:%20a%20mathematical%20approach&rft.jtitle=Journal%20of%20mathematical%20biology&rft.au=Akjouj,%20Imane&rft.date=2024-12-01&rft.volume=89&rft.issue=6&rft.spage=61&rft.pages=61-&rft.artnum=61&rft.issn=0303-6812&rft.eissn=1432-1416&rft_id=info:doi/10.1007/s00285-024-02155-z&rft_dat=%3Cproquest_cross%3E3128320898%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3125860379&rft_id=info:pmid/39510984&rfr_iscdi=true