Improved Estimates of Folding Stabilities and Kinetics with Multiensemble Markov Models

Markov State Models (MSMs) have been widely applied to understand protein folding mechanisms by predicting long time scale dynamics from ensembles of short molecular simulations. Most MSM estimators enforce detailed balance, assuming that trajectory data are sampled at an equilibrium. This is rarely...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biochemistry (Easton) 2024-11, Vol.63 (22), p.3045-3056
Hauptverfasser: Zhang, Si, Ge, Yunhui, Voelz, Vincent A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3056
container_issue 22
container_start_page 3045
container_title Biochemistry (Easton)
container_volume 63
creator Zhang, Si
Ge, Yunhui
Voelz, Vincent A.
description Markov State Models (MSMs) have been widely applied to understand protein folding mechanisms by predicting long time scale dynamics from ensembles of short molecular simulations. Most MSM estimators enforce detailed balance, assuming that trajectory data are sampled at an equilibrium. This is rarely the case for ab initio folding studies, however, and as a result, MSMs can severely underestimate protein folding stabilities from such data. To remedy this problem, we have developed an enhanced-sampling protocol in which (1) unbiased folding simulations are performed and sparse tICA is used to obtain features that best capture the slowest events in folding, (2) umbrella sampling along this reaction coordinate is performed to observe folding and unfolding transitions, and (3) the thermodynamics and kinetics of folding are estimated using multiensemble Markov models (MEMMs). Using this protocol, folding pathways, rates, and stabilities of a designed α-helical hairpin, Z34C, can be predicted in good agreement with experimental measurements. These results indicate that accurate simulation-based estimates of absolute folding stabilities are within reach, with implications for the computational design of folded miniproteins and peptidomimetics.
doi_str_mv 10.1021/acs.biochem.4c00573
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3128318779</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3154169119</sourcerecordid><originalsourceid>FETCH-LOGICAL-a258t-cb341e5b20d59f2c7532a99de97fc0089159160cdc64623ffcdb6eabd287ef9a3</originalsourceid><addsrcrecordid>eNqNkD1PwzAQhi0EoqXwC5CQR5YUf8RJPKKqhYpWDIAYI8e-UJckLnFSxL_HVQsjYrLO97x3ugehS0rGlDB6o7QfF9bpFdTjWBMiUn6EhlQwEsVSimM0JIQkEZMJGaAz79ehjEkan6IBl4JImiZD9DqvN63bgsFT39ladeCxK_HMVcY2b_ipU4WtbGfDt2oMfrANdFZ7_Gm7FV72Veg0HuqiArxU7bvb4qUzUPlzdFKqysPF4R2hl9n0eXIfLR7v5pPbRaSYyLpIFzymIApGjJAl06ngTElpQKZlOCmTVEiaEG10EieMl6U2RQKqMCxLoZSKj9D1fm644qMH3-W19RqqSjXgep9zKmKaSErlP1CWcZql6Q7le1S3zvsWynzTBjntV05JvpOfB_n5QX5-kB9SV4cFfVGD-c382A7AzR7Ypdeub5ug5s-R32dmk4U</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3128318779</pqid></control><display><type>article</type><title>Improved Estimates of Folding Stabilities and Kinetics with Multiensemble Markov Models</title><source>ACS Publications</source><creator>Zhang, Si ; Ge, Yunhui ; Voelz, Vincent A.</creator><creatorcontrib>Zhang, Si ; Ge, Yunhui ; Voelz, Vincent A.</creatorcontrib><description>Markov State Models (MSMs) have been widely applied to understand protein folding mechanisms by predicting long time scale dynamics from ensembles of short molecular simulations. Most MSM estimators enforce detailed balance, assuming that trajectory data are sampled at an equilibrium. This is rarely the case for ab initio folding studies, however, and as a result, MSMs can severely underestimate protein folding stabilities from such data. To remedy this problem, we have developed an enhanced-sampling protocol in which (1) unbiased folding simulations are performed and sparse tICA is used to obtain features that best capture the slowest events in folding, (2) umbrella sampling along this reaction coordinate is performed to observe folding and unfolding transitions, and (3) the thermodynamics and kinetics of folding are estimated using multiensemble Markov models (MEMMs). Using this protocol, folding pathways, rates, and stabilities of a designed α-helical hairpin, Z34C, can be predicted in good agreement with experimental measurements. These results indicate that accurate simulation-based estimates of absolute folding stabilities are within reach, with implications for the computational design of folded miniproteins and peptidomimetics.</description><identifier>ISSN: 0006-2960</identifier><identifier>ISSN: 1520-4995</identifier><identifier>EISSN: 1520-4995</identifier><identifier>DOI: 10.1021/acs.biochem.4c00573</identifier><identifier>PMID: 39509176</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>biochemistry ; Markov chain ; measurement ; molecular dynamics ; prediction ; protein folding ; sampling ; thermodynamics</subject><ispartof>Biochemistry (Easton), 2024-11, Vol.63 (22), p.3045-3056</ispartof><rights>2024 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a258t-cb341e5b20d59f2c7532a99de97fc0089159160cdc64623ffcdb6eabd287ef9a3</cites><orcidid>0000-0002-1054-2124 ; 0000-0002-1164-2020 ; 0000-0002-3946-1440</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.biochem.4c00573$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.biochem.4c00573$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,777,781,2752,27057,27905,27906,56719,56769</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39509176$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Si</creatorcontrib><creatorcontrib>Ge, Yunhui</creatorcontrib><creatorcontrib>Voelz, Vincent A.</creatorcontrib><title>Improved Estimates of Folding Stabilities and Kinetics with Multiensemble Markov Models</title><title>Biochemistry (Easton)</title><addtitle>Biochemistry</addtitle><description>Markov State Models (MSMs) have been widely applied to understand protein folding mechanisms by predicting long time scale dynamics from ensembles of short molecular simulations. Most MSM estimators enforce detailed balance, assuming that trajectory data are sampled at an equilibrium. This is rarely the case for ab initio folding studies, however, and as a result, MSMs can severely underestimate protein folding stabilities from such data. To remedy this problem, we have developed an enhanced-sampling protocol in which (1) unbiased folding simulations are performed and sparse tICA is used to obtain features that best capture the slowest events in folding, (2) umbrella sampling along this reaction coordinate is performed to observe folding and unfolding transitions, and (3) the thermodynamics and kinetics of folding are estimated using multiensemble Markov models (MEMMs). Using this protocol, folding pathways, rates, and stabilities of a designed α-helical hairpin, Z34C, can be predicted in good agreement with experimental measurements. These results indicate that accurate simulation-based estimates of absolute folding stabilities are within reach, with implications for the computational design of folded miniproteins and peptidomimetics.</description><subject>biochemistry</subject><subject>Markov chain</subject><subject>measurement</subject><subject>molecular dynamics</subject><subject>prediction</subject><subject>protein folding</subject><subject>sampling</subject><subject>thermodynamics</subject><issn>0006-2960</issn><issn>1520-4995</issn><issn>1520-4995</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqNkD1PwzAQhi0EoqXwC5CQR5YUf8RJPKKqhYpWDIAYI8e-UJckLnFSxL_HVQsjYrLO97x3ugehS0rGlDB6o7QfF9bpFdTjWBMiUn6EhlQwEsVSimM0JIQkEZMJGaAz79ehjEkan6IBl4JImiZD9DqvN63bgsFT39ladeCxK_HMVcY2b_ipU4WtbGfDt2oMfrANdFZ7_Gm7FV72Veg0HuqiArxU7bvb4qUzUPlzdFKqysPF4R2hl9n0eXIfLR7v5pPbRaSYyLpIFzymIApGjJAl06ngTElpQKZlOCmTVEiaEG10EieMl6U2RQKqMCxLoZSKj9D1fm644qMH3-W19RqqSjXgep9zKmKaSErlP1CWcZql6Q7le1S3zvsWynzTBjntV05JvpOfB_n5QX5-kB9SV4cFfVGD-c382A7AzR7Ypdeub5ug5s-R32dmk4U</recordid><startdate>20241119</startdate><enddate>20241119</enddate><creator>Zhang, Si</creator><creator>Ge, Yunhui</creator><creator>Voelz, Vincent A.</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><orcidid>https://orcid.org/0000-0002-1054-2124</orcidid><orcidid>https://orcid.org/0000-0002-1164-2020</orcidid><orcidid>https://orcid.org/0000-0002-3946-1440</orcidid></search><sort><creationdate>20241119</creationdate><title>Improved Estimates of Folding Stabilities and Kinetics with Multiensemble Markov Models</title><author>Zhang, Si ; Ge, Yunhui ; Voelz, Vincent A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a258t-cb341e5b20d59f2c7532a99de97fc0089159160cdc64623ffcdb6eabd287ef9a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>biochemistry</topic><topic>Markov chain</topic><topic>measurement</topic><topic>molecular dynamics</topic><topic>prediction</topic><topic>protein folding</topic><topic>sampling</topic><topic>thermodynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Si</creatorcontrib><creatorcontrib>Ge, Yunhui</creatorcontrib><creatorcontrib>Voelz, Vincent A.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Biochemistry (Easton)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Si</au><au>Ge, Yunhui</au><au>Voelz, Vincent A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improved Estimates of Folding Stabilities and Kinetics with Multiensemble Markov Models</atitle><jtitle>Biochemistry (Easton)</jtitle><addtitle>Biochemistry</addtitle><date>2024-11-19</date><risdate>2024</risdate><volume>63</volume><issue>22</issue><spage>3045</spage><epage>3056</epage><pages>3045-3056</pages><issn>0006-2960</issn><issn>1520-4995</issn><eissn>1520-4995</eissn><abstract>Markov State Models (MSMs) have been widely applied to understand protein folding mechanisms by predicting long time scale dynamics from ensembles of short molecular simulations. Most MSM estimators enforce detailed balance, assuming that trajectory data are sampled at an equilibrium. This is rarely the case for ab initio folding studies, however, and as a result, MSMs can severely underestimate protein folding stabilities from such data. To remedy this problem, we have developed an enhanced-sampling protocol in which (1) unbiased folding simulations are performed and sparse tICA is used to obtain features that best capture the slowest events in folding, (2) umbrella sampling along this reaction coordinate is performed to observe folding and unfolding transitions, and (3) the thermodynamics and kinetics of folding are estimated using multiensemble Markov models (MEMMs). Using this protocol, folding pathways, rates, and stabilities of a designed α-helical hairpin, Z34C, can be predicted in good agreement with experimental measurements. These results indicate that accurate simulation-based estimates of absolute folding stabilities are within reach, with implications for the computational design of folded miniproteins and peptidomimetics.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>39509176</pmid><doi>10.1021/acs.biochem.4c00573</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-1054-2124</orcidid><orcidid>https://orcid.org/0000-0002-1164-2020</orcidid><orcidid>https://orcid.org/0000-0002-3946-1440</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0006-2960
ispartof Biochemistry (Easton), 2024-11, Vol.63 (22), p.3045-3056
issn 0006-2960
1520-4995
1520-4995
language eng
recordid cdi_proquest_miscellaneous_3128318779
source ACS Publications
subjects biochemistry
Markov chain
measurement
molecular dynamics
prediction
protein folding
sampling
thermodynamics
title Improved Estimates of Folding Stabilities and Kinetics with Multiensemble Markov Models
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T08%3A12%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improved%20Estimates%20of%20Folding%20Stabilities%20and%20Kinetics%20with%20Multiensemble%20Markov%20Models&rft.jtitle=Biochemistry%20(Easton)&rft.au=Zhang,%20Si&rft.date=2024-11-19&rft.volume=63&rft.issue=22&rft.spage=3045&rft.epage=3056&rft.pages=3045-3056&rft.issn=0006-2960&rft.eissn=1520-4995&rft_id=info:doi/10.1021/acs.biochem.4c00573&rft_dat=%3Cproquest_cross%3E3154169119%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3128318779&rft_id=info:pmid/39509176&rfr_iscdi=true