Deep Learning Radiomic Analysis of MRI Combined with Clinical Characteristics Diagnoses Placenta Accreta Spectrum and its Subtypes

Different placenta accreta spectrum (PAS) subtypes pose varying surgical risks to the parturient. Machine learning model has the potential to diagnose PAS disorder. To develop a cascaded deep semantic-radiomic-clinical (DRC) model for diagnosing PAS and its subtypes based on T2-weighted MRI. Retrosp...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of magnetic resonance imaging 2024-12, Vol.60 (6), p.2705-2715
Hauptverfasser: Zheng, Changye, Zhong, Jian, Wang, Ya, Cao, Kangyang, Zhang, Chang, Yue, Peiyan, Xu, Xiaoyang, Yang, Yang, Liu, Qinghua, Zou, Yujian, Huang, Bingsheng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2715
container_issue 6
container_start_page 2705
container_title Journal of magnetic resonance imaging
container_volume 60
creator Zheng, Changye
Zhong, Jian
Wang, Ya
Cao, Kangyang
Zhang, Chang
Yue, Peiyan
Xu, Xiaoyang
Yang, Yang
Liu, Qinghua
Zou, Yujian
Huang, Bingsheng
description Different placenta accreta spectrum (PAS) subtypes pose varying surgical risks to the parturient. Machine learning model has the potential to diagnose PAS disorder. To develop a cascaded deep semantic-radiomic-clinical (DRC) model for diagnosing PAS and its subtypes based on T2-weighted MRI. Retrospective. 361 pregnant women (mean age: 33.10 ± 4.37 years), suspected of PAS, divided into segment training cohort (N = 40), internal training cohort (N = 139), internal testing cohort (N = 60), and external testing cohort (N = 122). Coronal T2-weighted sequence at 1.5 T and 3.0 T. Clinical characteristics such as history of uterine surgery and the presence of placenta previa, complete placenta previa and dangerous placenta previa were extracted from clinical records. The DRC model (incorporating radiomics, deep semantic features, and clinical characteristics), a cumulative radiological score method performed by radiologists, and other models (including a radiomics and clinical, the clinical, radiomics and deep learning models) were developed for PAS disorder diagnosing (existence of PAS and its subtypes). AUC, ACC, Student's t-test, the Mann-Whitney U test, chi-squared test, dice coefficient, intraclass correlation coefficients, least absolute shrinkage and selection operator regression, receiver operating characteristic curve, calibration curve with the Hosmer-Lemeshow test, decision curve analysis, DeLong test, and McNemar test. P 
doi_str_mv 10.1002/jmri.29317
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3128306561</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3128306561</sourcerecordid><originalsourceid>FETCH-LOGICAL-c315t-3daf31e18a4fd42b3875d7593ec045c56600f12c5168a49c22d541b702236a03</originalsourceid><addsrcrecordid>eNpd0TtPwzAUBWALgXgv_ABkiQUhpfgR5zFWKS-pCNR2jxznBlwldrAdoa78cgIFBqZzh09nuAehM0omlBB2ve6cnrCc03QHHVLBWMREluyONxE8ohlJD9CR92tCSJ7HYh8d8IznJM_oIfqYAfR4DtIZbV7wQtbadlrhqZHtxmuPbYMfFw-4sF2lDdT4XYdXXLTaaCVbXLxKJ1UAp33QyuOZli_GevD4uZUKTJB4qpSDMZc9qOCGDktTYx08Xg5V2PTgT9BeI1sPpz95jFa3N6viPpo_3T0U03mkOBUh4rVsOAWaybipY1bxLBV1KnIOisRCiSQhpKFMCZqMJFeM1SKmVUoY44kk_Bhdbmt7Z98G8KHstFfQttKAHXzJKcs4SURCR3rxj67t4MaPbBVLUpbFo7raKuWs9w6asne6k25TUlJ-DVN-DVN-DzPi85_Koeqg_qO_S_BPS_yIow</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3128267284</pqid></control><display><type>article</type><title>Deep Learning Radiomic Analysis of MRI Combined with Clinical Characteristics Diagnoses Placenta Accreta Spectrum and its Subtypes</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Zheng, Changye ; Zhong, Jian ; Wang, Ya ; Cao, Kangyang ; Zhang, Chang ; Yue, Peiyan ; Xu, Xiaoyang ; Yang, Yang ; Liu, Qinghua ; Zou, Yujian ; Huang, Bingsheng</creator><creatorcontrib>Zheng, Changye ; Zhong, Jian ; Wang, Ya ; Cao, Kangyang ; Zhang, Chang ; Yue, Peiyan ; Xu, Xiaoyang ; Yang, Yang ; Liu, Qinghua ; Zou, Yujian ; Huang, Bingsheng</creatorcontrib><description>Different placenta accreta spectrum (PAS) subtypes pose varying surgical risks to the parturient. Machine learning model has the potential to diagnose PAS disorder. To develop a cascaded deep semantic-radiomic-clinical (DRC) model for diagnosing PAS and its subtypes based on T2-weighted MRI. Retrospective. 361 pregnant women (mean age: 33.10 ± 4.37 years), suspected of PAS, divided into segment training cohort (N = 40), internal training cohort (N = 139), internal testing cohort (N = 60), and external testing cohort (N = 122). Coronal T2-weighted sequence at 1.5 T and 3.0 T. Clinical characteristics such as history of uterine surgery and the presence of placenta previa, complete placenta previa and dangerous placenta previa were extracted from clinical records. The DRC model (incorporating radiomics, deep semantic features, and clinical characteristics), a cumulative radiological score method performed by radiologists, and other models (including a radiomics and clinical, the clinical, radiomics and deep learning models) were developed for PAS disorder diagnosing (existence of PAS and its subtypes). AUC, ACC, Student's t-test, the Mann-Whitney U test, chi-squared test, dice coefficient, intraclass correlation coefficients, least absolute shrinkage and selection operator regression, receiver operating characteristic curve, calibration curve with the Hosmer-Lemeshow test, decision curve analysis, DeLong test, and McNemar test. P &lt; 0.05 indicated a significant difference. In PAS diagnosis, the DRC-1 outperformed than other models (AUC = 0.850 and 0.841 in internal and external testing cohorts, respectively). In PAS subtype classification (abnormal adherent placenta and abnormal invasive placenta), DRC-2 model performed similarly with radiologists (P = 0.773 and 0.579 in the internal testing cohort and P = 0.429 and 0.874 in the external testing cohort, respectively). The DRC model offers efficiency and high diagnostic sensitivity in diagnosis, aiding in surgical planning. 3 TECHNICAL EFFICACY: Stage 2.</description><identifier>ISSN: 1053-1807</identifier><identifier>ISSN: 1522-2586</identifier><identifier>EISSN: 1522-2586</identifier><identifier>DOI: 10.1002/jmri.29317</identifier><identifier>PMID: 38390981</identifier><language>eng</language><publisher>United States: Wiley Subscription Services, Inc</publisher><subject>Adult ; Correlation coefficient ; Correlation coefficients ; Deep Learning ; Diagnosis ; Feature extraction ; Female ; Field strength ; Humans ; Machine learning ; Magnetic resonance imaging ; Magnetic Resonance Imaging - methods ; Placenta ; Placenta Accreta - diagnostic imaging ; Placenta Previa - diagnostic imaging ; Population studies ; Pregnancy ; Pregnancy complications ; Radiomics ; Retrospective Studies ; ROC Curve ; Semantics ; Sensitivity analysis ; Statistical analysis ; Statistical models ; Statistical tests</subject><ispartof>Journal of magnetic resonance imaging, 2024-12, Vol.60 (6), p.2705-2715</ispartof><rights>2024 International Society for Magnetic Resonance in Medicine.</rights><rights>2024 International Society for Magnetic Resonance in Medicine</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c315t-3daf31e18a4fd42b3875d7593ec045c56600f12c5168a49c22d541b702236a03</citedby><cites>FETCH-LOGICAL-c315t-3daf31e18a4fd42b3875d7593ec045c56600f12c5168a49c22d541b702236a03</cites><orcidid>0000-0002-1183-7506 ; 0000-0001-6335-5309</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38390981$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zheng, Changye</creatorcontrib><creatorcontrib>Zhong, Jian</creatorcontrib><creatorcontrib>Wang, Ya</creatorcontrib><creatorcontrib>Cao, Kangyang</creatorcontrib><creatorcontrib>Zhang, Chang</creatorcontrib><creatorcontrib>Yue, Peiyan</creatorcontrib><creatorcontrib>Xu, Xiaoyang</creatorcontrib><creatorcontrib>Yang, Yang</creatorcontrib><creatorcontrib>Liu, Qinghua</creatorcontrib><creatorcontrib>Zou, Yujian</creatorcontrib><creatorcontrib>Huang, Bingsheng</creatorcontrib><title>Deep Learning Radiomic Analysis of MRI Combined with Clinical Characteristics Diagnoses Placenta Accreta Spectrum and its Subtypes</title><title>Journal of magnetic resonance imaging</title><addtitle>J Magn Reson Imaging</addtitle><description>Different placenta accreta spectrum (PAS) subtypes pose varying surgical risks to the parturient. Machine learning model has the potential to diagnose PAS disorder. To develop a cascaded deep semantic-radiomic-clinical (DRC) model for diagnosing PAS and its subtypes based on T2-weighted MRI. Retrospective. 361 pregnant women (mean age: 33.10 ± 4.37 years), suspected of PAS, divided into segment training cohort (N = 40), internal training cohort (N = 139), internal testing cohort (N = 60), and external testing cohort (N = 122). Coronal T2-weighted sequence at 1.5 T and 3.0 T. Clinical characteristics such as history of uterine surgery and the presence of placenta previa, complete placenta previa and dangerous placenta previa were extracted from clinical records. The DRC model (incorporating radiomics, deep semantic features, and clinical characteristics), a cumulative radiological score method performed by radiologists, and other models (including a radiomics and clinical, the clinical, radiomics and deep learning models) were developed for PAS disorder diagnosing (existence of PAS and its subtypes). AUC, ACC, Student's t-test, the Mann-Whitney U test, chi-squared test, dice coefficient, intraclass correlation coefficients, least absolute shrinkage and selection operator regression, receiver operating characteristic curve, calibration curve with the Hosmer-Lemeshow test, decision curve analysis, DeLong test, and McNemar test. P &lt; 0.05 indicated a significant difference. In PAS diagnosis, the DRC-1 outperformed than other models (AUC = 0.850 and 0.841 in internal and external testing cohorts, respectively). In PAS subtype classification (abnormal adherent placenta and abnormal invasive placenta), DRC-2 model performed similarly with radiologists (P = 0.773 and 0.579 in the internal testing cohort and P = 0.429 and 0.874 in the external testing cohort, respectively). The DRC model offers efficiency and high diagnostic sensitivity in diagnosis, aiding in surgical planning. 3 TECHNICAL EFFICACY: Stage 2.</description><subject>Adult</subject><subject>Correlation coefficient</subject><subject>Correlation coefficients</subject><subject>Deep Learning</subject><subject>Diagnosis</subject><subject>Feature extraction</subject><subject>Female</subject><subject>Field strength</subject><subject>Humans</subject><subject>Machine learning</subject><subject>Magnetic resonance imaging</subject><subject>Magnetic Resonance Imaging - methods</subject><subject>Placenta</subject><subject>Placenta Accreta - diagnostic imaging</subject><subject>Placenta Previa - diagnostic imaging</subject><subject>Population studies</subject><subject>Pregnancy</subject><subject>Pregnancy complications</subject><subject>Radiomics</subject><subject>Retrospective Studies</subject><subject>ROC Curve</subject><subject>Semantics</subject><subject>Sensitivity analysis</subject><subject>Statistical analysis</subject><subject>Statistical models</subject><subject>Statistical tests</subject><issn>1053-1807</issn><issn>1522-2586</issn><issn>1522-2586</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpd0TtPwzAUBWALgXgv_ABkiQUhpfgR5zFWKS-pCNR2jxznBlwldrAdoa78cgIFBqZzh09nuAehM0omlBB2ve6cnrCc03QHHVLBWMREluyONxE8ohlJD9CR92tCSJ7HYh8d8IznJM_oIfqYAfR4DtIZbV7wQtbadlrhqZHtxmuPbYMfFw-4sF2lDdT4XYdXXLTaaCVbXLxKJ1UAp33QyuOZli_GevD4uZUKTJB4qpSDMZc9qOCGDktTYx08Xg5V2PTgT9BeI1sPpz95jFa3N6viPpo_3T0U03mkOBUh4rVsOAWaybipY1bxLBV1KnIOisRCiSQhpKFMCZqMJFeM1SKmVUoY44kk_Bhdbmt7Z98G8KHstFfQttKAHXzJKcs4SURCR3rxj67t4MaPbBVLUpbFo7raKuWs9w6asne6k25TUlJ-DVN-DVN-DzPi85_Koeqg_qO_S_BPS_yIow</recordid><startdate>20241201</startdate><enddate>20241201</enddate><creator>Zheng, Changye</creator><creator>Zhong, Jian</creator><creator>Wang, Ya</creator><creator>Cao, Kangyang</creator><creator>Zhang, Chang</creator><creator>Yue, Peiyan</creator><creator>Xu, Xiaoyang</creator><creator>Yang, Yang</creator><creator>Liu, Qinghua</creator><creator>Zou, Yujian</creator><creator>Huang, Bingsheng</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7TK</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-1183-7506</orcidid><orcidid>https://orcid.org/0000-0001-6335-5309</orcidid></search><sort><creationdate>20241201</creationdate><title>Deep Learning Radiomic Analysis of MRI Combined with Clinical Characteristics Diagnoses Placenta Accreta Spectrum and its Subtypes</title><author>Zheng, Changye ; Zhong, Jian ; Wang, Ya ; Cao, Kangyang ; Zhang, Chang ; Yue, Peiyan ; Xu, Xiaoyang ; Yang, Yang ; Liu, Qinghua ; Zou, Yujian ; Huang, Bingsheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c315t-3daf31e18a4fd42b3875d7593ec045c56600f12c5168a49c22d541b702236a03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Adult</topic><topic>Correlation coefficient</topic><topic>Correlation coefficients</topic><topic>Deep Learning</topic><topic>Diagnosis</topic><topic>Feature extraction</topic><topic>Female</topic><topic>Field strength</topic><topic>Humans</topic><topic>Machine learning</topic><topic>Magnetic resonance imaging</topic><topic>Magnetic Resonance Imaging - methods</topic><topic>Placenta</topic><topic>Placenta Accreta - diagnostic imaging</topic><topic>Placenta Previa - diagnostic imaging</topic><topic>Population studies</topic><topic>Pregnancy</topic><topic>Pregnancy complications</topic><topic>Radiomics</topic><topic>Retrospective Studies</topic><topic>ROC Curve</topic><topic>Semantics</topic><topic>Sensitivity analysis</topic><topic>Statistical analysis</topic><topic>Statistical models</topic><topic>Statistical tests</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zheng, Changye</creatorcontrib><creatorcontrib>Zhong, Jian</creatorcontrib><creatorcontrib>Wang, Ya</creatorcontrib><creatorcontrib>Cao, Kangyang</creatorcontrib><creatorcontrib>Zhang, Chang</creatorcontrib><creatorcontrib>Yue, Peiyan</creatorcontrib><creatorcontrib>Xu, Xiaoyang</creatorcontrib><creatorcontrib>Yang, Yang</creatorcontrib><creatorcontrib>Liu, Qinghua</creatorcontrib><creatorcontrib>Zou, Yujian</creatorcontrib><creatorcontrib>Huang, Bingsheng</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of magnetic resonance imaging</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zheng, Changye</au><au>Zhong, Jian</au><au>Wang, Ya</au><au>Cao, Kangyang</au><au>Zhang, Chang</au><au>Yue, Peiyan</au><au>Xu, Xiaoyang</au><au>Yang, Yang</au><au>Liu, Qinghua</au><au>Zou, Yujian</au><au>Huang, Bingsheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deep Learning Radiomic Analysis of MRI Combined with Clinical Characteristics Diagnoses Placenta Accreta Spectrum and its Subtypes</atitle><jtitle>Journal of magnetic resonance imaging</jtitle><addtitle>J Magn Reson Imaging</addtitle><date>2024-12-01</date><risdate>2024</risdate><volume>60</volume><issue>6</issue><spage>2705</spage><epage>2715</epage><pages>2705-2715</pages><issn>1053-1807</issn><issn>1522-2586</issn><eissn>1522-2586</eissn><abstract>Different placenta accreta spectrum (PAS) subtypes pose varying surgical risks to the parturient. Machine learning model has the potential to diagnose PAS disorder. To develop a cascaded deep semantic-radiomic-clinical (DRC) model for diagnosing PAS and its subtypes based on T2-weighted MRI. Retrospective. 361 pregnant women (mean age: 33.10 ± 4.37 years), suspected of PAS, divided into segment training cohort (N = 40), internal training cohort (N = 139), internal testing cohort (N = 60), and external testing cohort (N = 122). Coronal T2-weighted sequence at 1.5 T and 3.0 T. Clinical characteristics such as history of uterine surgery and the presence of placenta previa, complete placenta previa and dangerous placenta previa were extracted from clinical records. The DRC model (incorporating radiomics, deep semantic features, and clinical characteristics), a cumulative radiological score method performed by radiologists, and other models (including a radiomics and clinical, the clinical, radiomics and deep learning models) were developed for PAS disorder diagnosing (existence of PAS and its subtypes). AUC, ACC, Student's t-test, the Mann-Whitney U test, chi-squared test, dice coefficient, intraclass correlation coefficients, least absolute shrinkage and selection operator regression, receiver operating characteristic curve, calibration curve with the Hosmer-Lemeshow test, decision curve analysis, DeLong test, and McNemar test. P &lt; 0.05 indicated a significant difference. In PAS diagnosis, the DRC-1 outperformed than other models (AUC = 0.850 and 0.841 in internal and external testing cohorts, respectively). In PAS subtype classification (abnormal adherent placenta and abnormal invasive placenta), DRC-2 model performed similarly with radiologists (P = 0.773 and 0.579 in the internal testing cohort and P = 0.429 and 0.874 in the external testing cohort, respectively). The DRC model offers efficiency and high diagnostic sensitivity in diagnosis, aiding in surgical planning. 3 TECHNICAL EFFICACY: Stage 2.</abstract><cop>United States</cop><pub>Wiley Subscription Services, Inc</pub><pmid>38390981</pmid><doi>10.1002/jmri.29317</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-1183-7506</orcidid><orcidid>https://orcid.org/0000-0001-6335-5309</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1053-1807
ispartof Journal of magnetic resonance imaging, 2024-12, Vol.60 (6), p.2705-2715
issn 1053-1807
1522-2586
1522-2586
language eng
recordid cdi_proquest_miscellaneous_3128306561
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects Adult
Correlation coefficient
Correlation coefficients
Deep Learning
Diagnosis
Feature extraction
Female
Field strength
Humans
Machine learning
Magnetic resonance imaging
Magnetic Resonance Imaging - methods
Placenta
Placenta Accreta - diagnostic imaging
Placenta Previa - diagnostic imaging
Population studies
Pregnancy
Pregnancy complications
Radiomics
Retrospective Studies
ROC Curve
Semantics
Sensitivity analysis
Statistical analysis
Statistical models
Statistical tests
title Deep Learning Radiomic Analysis of MRI Combined with Clinical Characteristics Diagnoses Placenta Accreta Spectrum and its Subtypes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T10%3A37%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deep%20Learning%20Radiomic%20Analysis%20of%20MRI%20Combined%20with%20Clinical%20Characteristics%20Diagnoses%20Placenta%20Accreta%20Spectrum%20and%20its%20Subtypes&rft.jtitle=Journal%20of%20magnetic%20resonance%20imaging&rft.au=Zheng,%20Changye&rft.date=2024-12-01&rft.volume=60&rft.issue=6&rft.spage=2705&rft.epage=2715&rft.pages=2705-2715&rft.issn=1053-1807&rft.eissn=1522-2586&rft_id=info:doi/10.1002/jmri.29317&rft_dat=%3Cproquest_cross%3E3128306561%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3128267284&rft_id=info:pmid/38390981&rfr_iscdi=true